Trigonometry

Geometry Level 3

k = 0 45 ( 1 + tan ( k π 180 ) ) = 2 m \large \prod_{k=0}^{45} \left(1 + \tan\left( \dfrac{k\pi}{180} \right) \right) = {2}^{\color{#D61F06}{m}} m = ? \large\color{#D61F06}{m} = \, ?


This question was taken from IME (Instituto Militar de Engenharia - Brazil).


The answer is 23.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mateus Gomes
Feb 5, 2016

P = ( 1 + tan ( 1 ) ) ( 1 + tan ( 2 ) ) ( 1 + tan ( 3 ) ) . . . ( 1 + tan ( 4 5 ) ) P=(1+\tan(1^\circ))(1+\tan(2^\circ))(1+\tan(3^\circ))...(1+\tan(45^\circ)) Using ( 1 + tan ( x ) ) ( 1 + tan ( y ) ) = 2 , when x + y = 4 5 \color{#3D99F6}{\text{Using} \, (1+\tan(x))(1+\tan(y))=2,\text{when}~~ x+y=45^\circ} ( 1 + tan ( 1 ) ) ( 1 + tan ( 4 4 ) ) ( 1 + tan ( 2 ) ( 1 + tan ( 4 3 ) ) . . . ( 1 + tan ( 4 5 ) ) (1+\tan(1^\circ))(1+\tan(44^\circ))(1+\tan(2^\circ)(1+\tan(43^\circ))...(1+\tan(45^\circ)) P = 2 × 2 × × 2 23 times = 2 23 P=\underbrace { 2\times 2\times \dots \times 2 }_{ 23 \, \text{times} } = {2}^{23} 2 m = 2 23 2^{m}=2^{23} m = 23 \color{#3D99F6}{\boxed{m=23}}

can you prove your statement

( 1 + tan x ) ( 1 + tan y ) = 2 , when x+y=45 (1+\tan{x})(1+\tan{y}) = 2, \quad \text{when x+y=45}

Department 8 - 5 years, 4 months ago

Log in to reply

@Lakshya Sinha w h e n x + y = 45 º {when~~x+y=45º} tan ( x ) + tan ( y ) 1 tan ( x ) × tan ( y ) = 1 \frac{\tan(x)+\tan(y)}{1-\tan(x)\times\tan(y)}=1 tan ( x ) + tan ( y ) = 1 tan ( x ) × tan ( y ) \therefore \tan(x)+\tan(y)=1-\tan(x)\times\tan(y) tan ( x ) + tan ( y ) + tan ( x ) × tan ( y ) ( + 1 ) = 1 ( + 1 ) \tan(x)+\tan(y)+\tan(x)\times\tan(y)~~~~\color{#3D99F6}{(+1)}=1~~~~\color{#3D99F6}{(+1)} tan ( x ) + tan ( y ) + tan ( x ) × tan ( y ) + 1 = 2 = ( 1 + tan ( x ) ) ( 1 + tan ( y ) ) \tan(x)+\tan(y)+\tan(x)\times\tan(y)+1=2={\boxed{(1+\tan(x))(1+\tan(y))}}

Mateus Gomes - 5 years, 4 months ago

Log in to reply

Thanks, never thought of that :-)

Department 8 - 5 years, 4 months ago

Did the same way !

Aditya Sky - 5 years, 4 months ago
Neetu Bala
Dec 20, 2017

( tan 45° +tan1°)( tan 45°+tan2°)......

((Sin45°/cos 45° )+(sin1°/cos1°))....

On simplifying. Using sin(A+B) formula

((Sin46°.sin47°....)/(cos45°.cos 1°.cos45°.cos2°......)

(Sin46°.sin47°....)/(((cos45°)^46).cos1.cos2......))

On simplifying further using sin(90-x)=cosx

(√2)^46

=> m=23

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...