Trigonometry

Geometry Level 3

Let A A and B B be angles in the interval 0 < A , B < 4 5 0^\circ < A,B < 45^\circ . If cos ( A + B ) = 4 5 \cos(A+ B) = \dfrac45 and sin ( A B ) = 5 13 \sin(A-B) = \dfrac5{13} , find the value of tan 2 A \tan2A .

56 63 \frac{56}{63} 25 33 \frac{25}{33} 65 63 \frac{65}{63} 56 33 \frac{56}{33}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

8 solutions

Ahmad Saad
Apr 28, 2016

Chew-Seong Cheong
Apr 28, 2016

cos ( A + B ) = 4 5 Given tan ( A + B ) = 3 4 tan A + tan B 1 tan A tan B = 3 4 4 tan A + 4 tan B = 3 3 tan A tan B tan B = 3 4 tan A 4 + 3 tan A \begin{aligned} \cos (A+B) & = \frac{4}{5} \quad \quad \small \color{#3D99F6}{\text{Given}} \\ \implies \tan (A+B) & = \frac{3}{4} \\ \frac{\tan A + \tan B}{1-\tan A \tan B} & = \frac{3}{4} \\ 4\tan A + 4 \tan B & = 3 - 3\tan A \tan B \\ \implies \tan B & = \frac{3-4\tan A}{4+3\tan A} \end{aligned}


sin ( A B ) = 5 13 Given tan ( A B ) = 5 12 tan A tan B 1 + tan A tan B = 5 12 12 tan A 12 tan B = 5 + 5 tan A tan B tan B = 12 tan A 5 12 + 5 tan A \begin{aligned} \sin (A-B) & = \frac{5}{13} \quad \quad \small \color{#3D99F6}{\text{Given}} \\ \implies \tan (A-B) & = \frac{5}{12} \\ \frac{\tan A - \tan B}{1+\tan A \tan B} & = \frac{5}{12} \\ 12\tan A - 12\tan B & = 5 + 5\tan A \tan B \\ \implies \tan B & = \frac{12\tan A -5}{12+5\tan A} \end{aligned}


3 4 tan A 4 + 3 tan A = 12 tan A 5 12 + 5 tan A ( 3 4 tan A ) ( 12 + 5 tan A ) = ( 12 tan A 5 ) ( 4 + 3 tan A ) 36 33 tan A 20 tan 2 A = 36 tan 2 A + 33 tan A 20 56 tan 2 A + 66 tan A 56 = 0 28 tan 2 A + 33 tan A 28 = 0 ( 7 tan A 4 ) ( 4 tan A + 7 ) = 0 tan A = 4 7 Since 0 < A < 4 5 \begin{aligned} \implies \frac{3-4\tan A}{4+3\tan A} & = \frac{12\tan A -5}{12+5\tan A} \\ (3-4\tan A)(12+5\tan A) & = (12\tan A -5)(4+3\tan A) \\ 36-33\tan A - 20 \tan^2 A & = 36 \tan^2 A + 33 \tan A -20 \\ 56 \tan^2 A + 66 \tan A - 56 & = 0 \\ 28 \tan^2 A + 33 \tan A - 28 & = 0 \\ (7\tan A -4)(4\tan A + 7) & = 0 \\ \implies \tan A & = \frac{4}{7} \quad \quad \small \color{#3D99F6}{\text{Since } 0^\circ < A < 45^\circ} \end{aligned}


tan 2 A = 8 7 1 16 49 = 56 33 \begin{aligned} \implies \tan 2A & = \frac{\frac{8}{7}}{1-\frac{16}{49}} = \boxed{\dfrac{56}{33}} \end{aligned}

Hung Woei Neoh
Apr 28, 2016

cos ( A + B ) = 4 5 A + B = cos 1 ( 4 5 ) \cos(A+B) = \dfrac{4}{5} \implies A+B = \cos^{-1} \left( \dfrac{4}{5} \right) ......(1)

sin ( A B ) = 5 13 A B = sin 1 ( 5 13 ) \sin(A-B) = \dfrac{5}{13} \implies A-B = \sin^{-1} \left( \dfrac{5}{13} \right) ......(2)

(1) + (2) 2 A = cos 1 ( 4 5 ) + sin 1 ( 5 13 ) \implies 2A = \cos^{-1} \left( \dfrac{4}{5} \right) + \sin^{-1} \left( \dfrac{5}{13} \right)

Therefore,

tan 2 A = tan ( cos 1 ( 4 5 ) + sin 1 ( 5 13 ) ) = tan ( cos 1 ( 4 5 ) ) + tan ( sin 1 ( 5 13 ) ) 1 tan ( cos 1 ( 4 5 ) ) tan ( sin 1 ( 5 13 ) ) = 3 4 + 5 12 1 ( 3 4 ) ( 5 12 ) = 7 6 1 15 48 = 56 33 \tan 2A = \tan \left( \cos^{-1} \left( \dfrac{4}{5} \right) + \sin^{-1} \left( \dfrac{5}{13} \right) \right)\\ =\dfrac{\tan \left( \cos^{-1} \left( \dfrac{4}{5} \right) \right) + \tan \left( \sin^{-1} \left( \dfrac{5}{13} \right) \right)}{1 - \tan \left( \cos^{-1} \left( \dfrac{4}{5} \right) \right) \tan \left( \sin^{-1} \left( \dfrac{5}{13} \right) \right)}\\ =\dfrac{\dfrac{3}{4} + \dfrac{5}{12}}{1 - \left( \dfrac{3}{4} \right) \left( \dfrac{5}{12} \right)}\\ =\dfrac{ \dfrac{7}{6}}{1 - \dfrac{15}{48}} = \boxed{\dfrac{56}{33}}

OR

cos ( A + B ) = 4 5 tan ( A + B ) = 3 4 sin ( A B ) = 5 13 tan ( A B ) = 5 12 \cos(A+B) = \dfrac{4}{5} \implies \tan(A+B) = \dfrac{3}{4}\\ \sin(A-B) = \dfrac{5}{13} \implies \tan(A-B) = \dfrac{5}{12}

tan 2 A = tan ( ( A + B ) + ( A B ) ) = tan ( A + B ) + tan ( A B ) 1 tan ( A + B ) tan ( A B ) = 3 4 + 5 12 1 ( 3 4 ) ( 5 12 ) = 7 6 1 15 48 = 56 33 \tan 2A\\ = \tan((A+B) + (A-B))\\ =\dfrac{\tan(A+B) + \tan(A-B)}{1 - \tan(A+B)\tan(A-B)}\\ =\dfrac{\dfrac{3}{4} + \dfrac{5}{12}}{1 - \left( \dfrac{3}{4} \right) \left( \dfrac{5}{12} \right)}\\ =\dfrac{ \dfrac{7}{6}}{1 - \dfrac{15}{48}} = \boxed{\dfrac{56}{33}}

Yashas Ravi
Mar 30, 2019

Here is a geometric way to solve the problem:

Here, the values of ( x ) (x) and ( y ) (y) are derived from a system of equations with the angle bisector theorem and the fact that ( x + y + 1.6667 ) = 3 (x+y+1.6667) = 3 by the Pythagorean theorem. The values ( 13 3 (\frac{13}{3} )) and ( 5 3 (\frac{5}{3} )) are derived from the fact that the Triangle with those lengths is a 5 12 13 5-12-13 triangle dilated with a factor of 0.333 0.333 since 12 0.333 = 4 12*0.333=4 , and 12 12 is derived from a 5 12 13 5-12-13 triangle as s i n ( a b ) = ( 5 13 sin(a-b) = (\frac{5}{13} )).

Next, using t a n ( A ) = ( 4 7 tan(A) = (\frac{4}{7} )), then t a n ( 2 A ) tan(2A) can be evaluated using substitution and the tan double angle formula.

Applying product-to-sum identities, we have thee following:

cos ( A + B ) cos ( A B ) = 48 65 , ( 1 a ) \cos(A + B)\cos(A - B) = \frac{48}{65}, (1a)

sin ( A + B ) sin ( A B ) = 15 65 , ( 1 b ) \sin(A + B)\sin(A - B) = \frac{15}{65}, (1b)

sin ( A + B ) cos ( A B ) = 36 65 , ( 2 a ) \sin(A + B)\cos(A - B) = \frac{36}{65}, (2a)

cos ( A + B ) sin ( A B ) = 20 65 . ( 2 b ) \cos(A + B)\sin(A - B) = \frac{20}{65}. (2b)

Subtract ( 1 a ) (1a) and ( 1 b ) (1b) , and add ( 2 a ) (2a) and ( 2 b ) (2b) respectively yields

cos ( A + B ) cos ( A B ) sin ( A + B ) sin ( A B ) = 33 65 = cos ( 2 A ) , ( 3 ) \cos(A + B)\cos(A - B) - \sin(A + B)\sin(A - B) = \frac{33}{65} = \cos(2A), (3)

sin ( A + B ) cos ( A B ) + cos ( A + B ) sin ( A B ) = 56 65 = sin ( 2 A ) . ( 4 ) \sin(A + B)\cos(A - B) + \cos(A + B)\sin(A - B) = \frac{56}{65} = \sin(2A). (4)

Divide ( 4 ) (4) and ( 3 ) (3) gives

tan ( 2 A ) = sin ( 2 A ) cos ( 2 A ) = 56 33 . \tan(2A) = \frac{\sin(2A)}{\cos(2A)} = \boxed{\frac{56}{33}}.

Note : cos ( A B ) = 12 13 \cos(A - B) = \frac{12}{13} and sin ( A + B ) = 3 5 \sin(A + B) = \frac{3}{5} .

Roy Bunford
Apr 30, 2016

Sin(A+B. + A - B) = sin (2A) Sin(A + B + A- B) = Sin(A+B)cos(A-B) + cos(A+B)sin(A-B) cos(A + B) = 4/5 so sin(A + B) = 3/5 sin(A-B) = 5/13 so cos(A-B) = 12/13 sin(2A) = 3/5 × 12/13 + 4/5 × 5/13 = 56/65 So cos(2A) = 33/65 Therefore tan(2A) =56/65 ÷ 33/65 = 56/33

Edward Shu Jin
Apr 28, 2016

Easy ... Like whi dont know that..this is old school . dont even need to calculateur that you can JUST do a quick resolution in your head

Roger Erisman
Apr 28, 2016

Inverse sin(5/13) = 22.62 degrees = A - B

Inverse cos(4/5) = 36.87 degrees = A + B

Adding two equations yields: 59.49 degrees = 2 *A

Tan(59.49) = 1.697 = 56/33

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...