This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
how do you know the value of sin 18 and sin 54 ??
Log in to reply
Let x=18, 5x=90, 3x=90-2x .. Take sin on both sides and use sin 3x =3sin x-4sin^3 x and cos 2x=1-2sin^2 x to solve for sin x... Having found sin 18 it is trivial to found cos 36(=sin 54) by using 1-2sin^2 18....
X = tan 9 ∘ − tan 2 7 ∘ − tan 6 3 ∘ + tan 8 1 ∘ = tan 9 ∘ + tan 8 1 ∘ − tan 2 7 ∘ − tan 6 3 ∘ = tan ( 4 5 ∘ − 3 6 ∘ ) + tan ( 4 5 ∘ + 3 6 ∘ ) − tan ( 4 5 ∘ − 1 8 ∘ ) − tan ( 4 5 ∘ + 1 8 ∘ ) = 1 + tan 3 6 ∘ 1 − tan 3 6 ∘ + 1 − tan 3 6 ∘ 1 + tan 3 6 ∘ − 1 + tan 1 8 ∘ 1 − tan 1 8 ∘ − 1 − tan 1 8 ∘ 1 + tan 1 8 ∘ = 1 − tan 2 3 6 ∘ ( 1 − tan 3 6 ∘ ) 2 + ( 1 + tan 3 6 ∘ ) 2 − 1 − tan 2 1 8 ∘ ( 1 − tan 1 8 ∘ ) 2 + ( 1 + tan 1 8 ∘ ) 2 = 2 ( 1 − tan 2 3 6 ∘ ) 2 ( 1 + tan 2 3 6 ∘ ) − 2 ( 1 − tan 2 1 8 ∘ ) 2 ( 1 + tan 2 1 8 ∘ ) Note that: cos 2 θ = 1 + tan 2 θ 1 − tan 2 θ = cos 7 2 ∘ 2 − cos 3 6 ∘ 2 = cos 7 2 ∘ cos 3 6 ∘ 2 ( cos 3 6 ∘ − cos 7 2 ∘ ) Note that: cos ( 1 8 0 ∘ − θ ) = − cos θ = cos 7 2 ∘ cos 3 6 ∘ 2 ( cos 3 6 ∘ + cos 1 0 8 ∘ ) Note that: k = 0 ∑ n − 1 cos ( 2 n + 1 ) ( 2 k + 1 ) π = 2 1 = cos 7 2 ∘ cos 3 6 ∘ 1 = cos 7 2 ∘ cos 3 6 ∘ sin 3 6 ∘ sin 3 6 ∘ = cos 7 2 ∘ sin 7 2 ∘ 2 sin 3 6 ∘ = sin 1 4 4 ∘ 4 sin 3 6 ∘ Note that: sin ( 1 8 0 ∘ − θ ) = − sin θ = sin 3 6 ∘ 4 sin 3 6 ∘ = 4
Problem Loading...
Note Loading...
Set Loading...
How many times will this question be repeated on brilliant?
( tan 8 1 ∘ + tan 9 ∘ ) − ( tan 6 3 ∘ + tan 2 7 ∘ )
= ⎝ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎛ 2 sin 1 8 ∘ cos 9 ∘ sin 9 ∘ cos 8 1 ∘ sin 9 0 ∘ 1 ⎠ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎞ − ⎝ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎛ 2 sin 5 4 ∘ cos 2 7 ∘ sin 2 7 ∘ cos 6 3 ∘ sin 9 0 ∘ 1 ⎠ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎞
= 2 ⎝ ⎛ 4 5 − 1 1 − 4 5 + 1 1 ⎠ ⎞
= 2 × 2 = 4
In second line I used : tan A + tan B = cos A cos B sin ( A + B ) , sin A cos A = 2 sin 2 A
Also, sin 1 8 ∘ = 4 5 − 1 , sin 5 4 ∘ = 4 5 + 1