Trigonometry

Geometry Level 2

If sec A = 17 8 \sec A = \dfrac{17}8 , find 3 4 sin 2 A 4 cos 2 A 3 \dfrac{3-4\sin^2 A}{4\cos^2 A - 3} .

33 611 \frac{33}{611} 1 1 30 4 \frac{30}4 0 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

3 4 sin 2 A 4 cos 2 A 3 = 3 4 ( 1 cos 2 A ) 4 cos 2 A 3 = 4 cos 2 A 1 4 cos 2 A 3 Divide up and down by cos 2 A = 4 sec 2 A 4 3 sec 2 A = 4 ( 17 8 ) 2 4 3 ( 17 8 ) 2 = 256 289 256 867 = 33 611 = 33 611 \begin{aligned} \frac {3-4\sin^2A}{4\cos^2 A-3} & = \frac {3-4(1-\cos^2A)}{4\cos^2 A-3} \\ & = \frac {4\cos^2A -1}{4\cos^2 A-3} & \small \color{#3D99F6}{\text{Divide up and down by }\cos^2 A} \\ & = \frac {4 -\sec^2 A}{4-3\sec^2 A} \\ & = \frac {4 -\left(\frac {17}8\right)^2}{4-3\left(\frac {17}8\right)^2} \\ & = \frac {256-289}{256 -867} \\ & = \frac {-33}{-611} \\ & = \boxed{\dfrac {33}{611}} \end{aligned}

sir you are the king of solutions

Sathvik Acharya - 4 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...