Trigonometry!

Geometry Level 2

If A + B = 22 5 A + B = 225^{\circ} , find ( 1 + tan A ) ( 1 + tan B ) , (1+\tan A)(1+\tan B), where defined.


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Chew-Seong Cheong
Jan 16, 2015

It is given that: A + B = 22 5 A+B = 225^\circ

tan ( A + B ) = tan A + tan B 1 tan A tan B = tan 22 5 = 1 tan A + tan B = 1 tan A tan B tan A + tan B + tan A tan B = 1 \begin{aligned} \implies \tan {(A+B)} & = \dfrac {\tan {A}+ \tan{B}}{1-\tan{A}\tan{B}} = \tan {225^\circ} = 1 \\ \implies \tan {A}+ \tan{B} & = 1-\tan{A}\tan{B} \\ \color{#3D99F6}{\tan {A}+ \tan{B} + \tan{A}\tan{B}} & = \color{#3D99F6}{1} \end{aligned}

Now, we have:

( 1 + tan A ) ( 1 + tan B ) = 1 + tan A + tan B + tan A tan B = 1 + 1 = 2 \begin{aligned} (1+\tan{A})(1+\tan{B}) & = 1 + \color{#3D99F6} {\tan {A}+ \tan{B} + \tan{A}\tan{B}} \\ & = 1 + \color{#3D99F6}{1} \\ & = \boxed{2} \end{aligned}

May be the best way to approach this one!

Bhargav Upadhyay - 6 years, 3 months ago

Did it the same way :)

Athiyaman Nallathambi - 5 years, 11 months ago

Same method as yours.

Hong Yi Lai - 4 years, 9 months ago

Same way :)

Farouk Yasser - 6 years, 3 months ago
Paola Ramírez
Jan 16, 2015

( 1 + tan A ) ( 1 + tan B ) = sin A sin B + cos A cos B + sin A cos B + sin B cos A cos A cos B (1+\tan A)(1+\tan B)=\frac{ \sin A \sin B+ \cos A \cos B+ \sin A \cos B+\sin B \cos A} {\cos A \cos B}

sin A sin B + cos A cos B = cos ( A B ) \sin A\sin B+\cos A\cos B=\cos (A-B) sin A cos B + sin B cos A = sin ( A + B ) \sin A\cos B+\sin B\cos A=\sin (A+B)

sin A sin B + cos A cos B + sin A cos B + sin B cos A cos A cos B = cos ( A B ) + sin ( A + B ) cos A cos B \frac{\sin A\sin B+\cos A\cos B+\sin A\cos B+\sin B\cos A}{\cos A\cos B}=\frac{\cos (A-B)+\sin (A+B)}{\cos A\cos B}

cos A cos B = 1 2 × ( cos ( A + B ) + cos ( A B ) ) \cos A\cos B =\frac{1}{2} \times (\cos (A+B)+\cos (A-B))

cos ( A B ) + sin ( A + B ) cos A cos B = 2 × cos ( A B ) + sin ( A + B ) cos ( A + B ) + cos ( A B ) \frac{\cos (A-B)+\sin (A+B)}{\cos A\cos B}=2\times \frac{\cos (A-B)+\sin (A+B)}{\cos (A+B)+\cos (A-B)}

cos ( A + B ) = sin ( A + B ) \cos (A+B)=\sin (A+B) because A + B = 225 ° A+B=225°

2 × cos ( A B ) + sin ( A + B ) cos ( A + B ) + cos ( A B ) = 2 × cos ( A B ) + sin ( A + B ) sin ( A + B ) + cos ( A B ) = 2 ( 1 ) = 2 2\times \frac{\cos (A-B)+\sin (A+B)}{\cos (A+B)+\cos (A-B)}=2\times \frac{\cos (A-B)+\sin (A+B)}{\sin (A+B)+\cos (A-B)}=2(1)=\boxed{2}

Upendra Nath
Nov 28, 2015

Put a =180,b=45

Gamal Sultan
Feb 26, 2015

we have the law

tan(A + B) = (tan A + tan B)/(1 - tan A tan B) = tan 225 = tan(180 + 45) =+tan 45 = 1

tan A + tan B = 1 - tan A tan B

tan A + tan B + tan A tan B = 1 .............................. (1)

(1 + tan A)(1 + tan B) = tan A + tan B + tan A tan B + 1 .............. (2)

Then , from (1), (2)

(1 + tan A)(1 + tan B) = 1 + 1 = 2

Roy Tu
Jan 18, 2015

The final answer is independent of what A, B we choose. Let:

A = 4 5 B = 18 0 A = 45^\circ \\ B = 180^\circ

Then:

( 1 + tan A ) ( 1 + tan B ) = 2 1 = 2 (1 + \tan{A})(1 + \tan{B}) \\ = 2 * 1 \\ = \boxed{2}

Actually, they are dependent to one another: A + B = 22 5 A + B = 225^\circ . You can't have A = 4 2 A = 42^\circ and B = 111111 1 B = 1111111^\circ

Pi Han Goh - 6 years, 2 months ago

I see your point, it's a 'Brilliant' question, you know they can only expect you to type a rational number (probably an integer) in the answer box. But your solution does not show that the expression is equal to 2 for all A, B which satisfy A+B=225.

Pi Han Goh, I think he meant the answer is true for all A, B satisfying A+B=225 (which is something we don't know from the question).

Davy Ker - 5 years, 5 months ago

Manish Mayank
Jan 17, 2015

Most simple method:

One pair of the values of A & B are 180 & 45 putting these values we get answer 2.

Although you got the right final answer, but you have only shown that for A = 18 0 , B = 4 5 A = 180^\circ, B = 45^\circ yields 2 2 as the answer.

Pi Han Goh - 6 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...