trigonometry

Level pending

Compute: ( t a n ( 22.5 ) ) 4 + 12 2 (tan(22.5))^{4} + 12\sqrt{2}


The answer is 17.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Pi Han Goh
Nov 21, 2014

With tan ( 4 5 ) = 1 \tan (45^\circ) = 1 , apply Double Angle Formula, tan ( 2 x ) = 2 tan ( x ) 1 tan 2 ( x ) \tan(2x) = \frac { 2 \tan (x) }{1 - \tan^2 (x) } , we have tan ( 22. 5 ) = 2 1 \tan(22.5^\circ) = \sqrt2 - 1

tan 4 ( 22. 5 ) = ( 2 1 ) 4 = ( ( 2 1 ) 2 ) 2 = ( 3 2 2 ) 2 = 17 12 2 \Rightarrow \tan^4(22.5^\circ) = (\sqrt2 - 1)^4 = ( (\sqrt2 - 1)^2 )^2 = (3- 2\sqrt2)^2 = 17 - 12\sqrt2

tan 4 ( 22. 5 ) + 12 2 = 17 \Rightarrow \tan^4(22.5^\circ) + 12\sqrt2 = \boxed{17}

how did u got tan(22.5)=\sqrt{2} - 1

Aditya Todkar - 6 years, 6 months ago

Log in to reply

Substitute x = 22. 5 x = 22.5^\circ into the trigonometric equation given, then tan ( 2 x ) = 1 \tan(2x) = 1 , Let y = tan ( 22. 5 ) y = \tan(22.5^\circ) , rearrange, solve for y y using the quadratic formula.

Pi Han Goh - 6 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...