Trigonometry

Geometry Level 3

If sin 2 θ + 3 cos θ 2 = 0 \sin^2 \theta + 3\cos\theta - 2 = 0 , find the value of cos 3 θ + sec 3 θ \cos^3 \theta + \sec^3 \theta .


The answer is 18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Md Zuhair
Mar 12, 2017

sin 2 θ + 3 cos θ 2 = 0 \sin^2 \theta + 3 \cos \theta -2 = 0 So Now 1 cos 2 θ + 3 cos θ 2 = 0 1 - \cos ^2 \theta + 3 \cos \theta -2 = 0

So cos 2 θ 3 cos θ + 1 = 0 \cos^2 \theta - 3 \cos \theta +1 = 0

So cos θ + sec θ = 3 \cos \theta + \sec \theta = 3

So now , ( cos θ + sec θ ) ( cos 2 θ + sec 2 θ 1 ) (\cos \theta + \sec \theta )(\cos^2 \theta + \sec^2 \theta - 1)

now cos θ + sec θ = 3 \cos \theta + \sec \theta = 3 , Now squaring cos 2 θ + sec 2 θ = 7 \cos^2 \theta + \sec^2 \theta = 7

putting values We 3.6 3 . 6 = 18 \boxed{18}

nice solution! did almost the same, instead used ,

cos 3 θ + sec 3 θ = ( cos θ + sec θ ) 3 3 cos θ × sec θ ( cos θ + sec θ ) cos 3 θ + sec 3 θ = 3 3 3 × 3 = 27 9 = 18 \begin{aligned} \cos^3\theta+\sec^3\theta&=(\cos\theta+\sec\theta)^3-3\cos\theta\times\sec\theta(\cos\theta+\sec\theta)\\ \cos^3\theta+\sec^3\theta &=3^3-3\times3 =27-9=18\end{aligned}

  • :)

Anirudh Sreekumar - 4 years, 3 months ago

Log in to reply

Thanks Anirudh

Md Zuhair - 4 years, 3 months ago

Better simpler. +1)

Niranjan Khanderia - 4 years, 3 months ago

Nicee, please follow me okay(:

Aira Thalca - 4 years, 3 months ago
Chew-Seong Cheong
Mar 13, 2017

sin 2 θ + 2 cos θ 2 = 0 1 cos 2 θ + 3 cos θ 2 = 0 cos 2 θ + 1 = 3 cos θ Dividing both sides by cos θ cos θ + sec θ = 3 Cubing both sides cos 3 θ + 3 cos θ + 3 sec θ + sec 3 θ = 27 cos 3 θ + 3 ( 3 ) + sec 3 θ = 27 cos 3 θ + sec 3 θ = 27 9 = 18 \begin{aligned} \sin^2 \theta + 2\cos \theta - 2 & = 0 \\ 1 - \cos^2 \theta + 3\cos \theta -2 & =0 \\ \cos^2 \theta + 1 & = 3 \cos \theta & \small \color{#3D99F6} \text{Dividing both sides by }\cos \theta \\ \cos \theta + \sec \theta & = 3 & \small \color{#3D99F6} \text{Cubing both sides} \\ \cos^3 \theta + {\color{#3D99F6}3\cos \theta + 3\sec \theta} + \sec^3 \theta & = 27 \\ \cos^3 \theta + {\color{#3D99F6}3(3)} + \sec^3 \theta & = 27 \\ \cos^3 \theta + \sec^3 \theta & = 27 - 9 \\ & = \boxed{18} \end{aligned}

Niceee, please follow me okay

Aira Thalca - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...