Simplify 1 + sin x + cos x 1 + sin x − cos x
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Using half-angle tangent substitution or Weierstrass substitution and let t = tan 2 x , we have:
1 + sin x + cos x 1 + sin x − cos x = 1 + 1 + t 2 2 t + 1 + t 2 1 − t 2 1 + 1 + t 2 2 t − 1 + t 2 1 − t 2 = 1 + t 2 + 2 t + 1 − t 2 1 + t 2 + 2 t − 1 + t 2 = 2 + 2 t 2 t + 2 t 2 = t = tan 2 x
Problem Loading...
Note Loading...
Set Loading...
Using the identities
sin ( x ) = 2 sin ( 2 x ) cos ( 2 x ) ,
cos ( x ) = 1 − 2 sin 2 ( 2 x ) ⟹ 1 − cos ( x ) = 2 sin 2 ( 2 x ) and
cos ( x ) = 2 cos 2 ( 2 x ) − 1 ⟹ 1 + cos ( x ) = 2 cos 2 ( 2 x ) , we see that
1 + sin ( x ) + cos ( x ) 1 + sin ( x ) − cos ( x ) = ( 1 + cos ( x ) ) + sin ( x ) ( 1 − cos ( x ) ) + sin ( x ) = 2 cos 2 ( 2 x ) + 2 sin ( 2 x ) cos ( 2 x ) 2 sin 2 ( 2 x ) + 2 sin ( 2 x ) cos ( 2 x ) =
2 cos ( 2 x ) ( cos ( 2 x ) + sin ( 2 x ) ) 2 sin ( 2 x ) ( sin ( 2 x ) + cos ( 2 x ) ) = cos ( 2 x ) sin ( 2 x ) = tan ( 2 x ) .