Trigonometry

Geometry Level 2

Simplify 1 + sin x cos x 1 + sin x + cos x \large \frac{ 1+ \sin x - \cos x}{1 + \sin x + \cos x}

tan ( x / 2 ) \tan(x/2) sin ( x / 2 ) \sin(x/2) cot ( x / 2 ) \cot(x/2) cos ( x / 2 ) \cos(x/2)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Using the identities

sin ( x ) = 2 sin ( x 2 ) cos ( x 2 ) \sin(x) = 2\sin(\frac{x}{2})\cos(\frac{x}{2}) ,

cos ( x ) = 1 2 sin 2 ( x 2 ) 1 cos ( x ) = 2 sin 2 ( x 2 ) \cos(x) = 1 - 2\sin^{2}(\frac{x}{2}) \Longrightarrow 1 - \cos(x) = 2\sin^{2}(\frac{x}{2}) and

cos ( x ) = 2 cos 2 ( x 2 ) 1 1 + cos ( x ) = 2 cos 2 ( x 2 ) \cos(x) = 2\cos^{2}(\frac{x}{2}) - 1 \Longrightarrow 1 + \cos(x) = 2\cos^{2}(\frac{x}{2}) , we see that

1 + sin ( x ) cos ( x ) 1 + sin ( x ) + cos ( x ) = ( 1 cos ( x ) ) + sin ( x ) ( 1 + cos ( x ) ) + sin ( x ) = 2 sin 2 ( x 2 ) + 2 sin ( x 2 ) cos ( x 2 ) 2 cos 2 ( x 2 ) + 2 sin ( x 2 ) cos ( x 2 ) = \dfrac{1 + \sin(x) - \cos(x)}{1 + \sin(x) + \cos(x)} = \dfrac{(1 - \cos(x)) + \sin(x)}{(1 + \cos(x)) + \sin(x)} = \dfrac{2\sin^{2}(\frac{x}{2}) + 2\sin(\frac{x}{2})\cos(\frac{x}{2})}{2\cos^{2}(\frac{x}{2}) + 2\sin(\frac{x}{2})\cos(\frac{x}{2})} =

2 sin ( x 2 ) ( sin ( x 2 ) + cos ( x 2 ) ) 2 cos ( x 2 ) ( cos ( x 2 ) + sin ( x 2 ) ) = sin ( x 2 ) cos ( x 2 ) = tan ( x 2 ) \dfrac{2\sin(\frac{x}{2})(\sin(\frac{x}{2}) + \cos(\frac{x}{2}))}{2\cos(\frac{x}{2})(\cos(\frac{x}{2}) + \sin(\frac{x}{2}))} = \dfrac{\sin(\frac{x}{2})}{\cos(\frac{x}{2})} = \boxed{\tan(\frac{x}{2})} .

Chew-Seong Cheong
Apr 26, 2017

Using half-angle tangent substitution or Weierstrass substitution and let t = tan x 2 t = \tan \dfrac x2 , we have:

1 + sin x cos x 1 + sin x + cos x = 1 + 2 t 1 + t 2 1 t 2 1 + t 2 1 + 2 t 1 + t 2 + 1 t 2 1 + t 2 = 1 + t 2 + 2 t 1 + t 2 1 + t 2 + 2 t + 1 t 2 = 2 t + 2 t 2 2 + 2 t = t = tan x 2 \begin{aligned} \frac {1+\sin x - \cos x}{1+\sin x + \cos x} & = \frac {1+\frac {2t}{1+t^2}-\frac {1-t^2}{1+t^2}}{1+\frac {2t}{1+t^2}+\frac {1-t^2}{1+t^2}} \\ & = \frac {1+t^2 + 2t - 1+t^2}{1+t^2 + 2t + 1-t^2} \\ & = \frac {2t +2t^2}{2+2t} \\ & = t = \boxed{\tan \dfrac x2} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...