A geometry problem by Aakhyat Singh

Geometry Level 4

cos A 1 sin A = 1 + cos A + a sin A 1 + cos A + b sin A \large \frac {\cos A}{1-\sin A} = \frac {1+\cos A+a \sin A}{1+\cos A+b\sin A}

Given the above, what is a + b a+b ?


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Aug 17, 2017

Relevant wiki: Half Angle Tangent Substitution

cos A 1 sin A = 1 + cos A + a sin A 1 + cos A + b sin A Using half angle tangent substitution 1 t 2 1 + t 2 1 2 t 1 + t 2 = 1 + 1 t 2 1 + t 2 + 2 a t 1 + t 2 1 + 1 t 2 1 + t 2 + 2 b t 1 + t 2 and let t = tan A 2 1 t 2 1 + t 2 2 t = 1 + t 2 + 1 t 2 + 2 a t 1 + t 2 + 1 t 2 + 2 b t ( 1 t ) ( 1 + t ) ( 1 t ) 2 = 2 + 2 a t 2 + 2 b t 1 + t 1 t = 1 + a t 1 + b t \begin{aligned} \frac {\cos A}{1-\sin A} & = \frac {1+\cos A + a\sin A}{1+\cos A + b\sin A} & \small \color{#3D99F6} \text{Using half angle tangent substitution} \\ \frac {\frac {1-t^2}{1+t^2}}{1-\frac {2t}{1+t^2}} & = \frac {1+\frac {1-t^2}{1+t^2}+\frac {2at}{1+t^2}}{1+\frac {1-t^2}{1+t^2}+\frac {2bt}{1+t^2}} & \small \color{#3D99F6} \text{and let }t = \tan \frac A2 \\ \frac {1-t^2}{1+t^2 - 2t} & = \frac {1+t^2+1-t^2 + 2at}{1+t^2+1-t^2 + 2bt} \\ \frac {(1-t)(1+t)}{(1-t)^2} & = \frac {2+ 2at}{2 + 2bt} \\ \frac {1+t}{1-t} & = \frac {1+at}{1+bt} \end{aligned}

a = 1 , b = 1 , a + b = 1 1 = 0 \implies a=1, b=-1, \implies a+b = 1-1 = \boxed{0}

Aakhyat Singh
Aug 15, 2017

U will get a=1,b=-1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...