A geometry problem by Aakhyat Singh

Geometry Level 4

y + 1 1 y = 1 + sin A 1 sin A \large \frac {y+1}{1-y}= \sqrt{\frac {1+\sin A}{1-\sin A}}

Given the above, where A A is an acute angle, find y y .

cot A 2 \cot \frac A2 cot A 2 tan A 2 \cot \frac A2 - \tan \frac A2 cot A 2 + tan A 2 \cot \frac A2 + \tan \frac A2 tan A 2 \tan \frac A2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Aug 17, 2017

y + 1 1 y = 1 + sin A 1 sin A Using half angle tangent substitution = 1 + 2 t 1 + t 2 1 2 t 1 t 2 and let t = tan A 2 = 1 + t 2 + 2 t 1 + t 2 2 t = ( 1 + t ) 2 ( 1 t ) 2 = 1 + t 1 t y = t = tan A 2 \begin{aligned} \frac {y+1}{1-y} & = \sqrt{\frac {1+\sin A}{1-\sin A}} & \small \color{#3D99F6} \text{Using half angle tangent substitution} \\ & = \sqrt{\frac {1+\frac {2t}{1+t^2}}{1-\frac {2t}{1-t^2}}} & \small \color{#3D99F6} \text{and let }t = \tan \frac A2 \\ & = \sqrt{\frac {1+t^2+2t}{1+t^2-2t}} \\ & = \sqrt{\frac {(1+t)^2}{(1-t)^2}} \\ & = \frac {1+t}{1-t} \\ \implies y & = t = \boxed{\tan \dfrac A2} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...