A geometry problem by Aakhyat Singh

Geometry Level 3

If in a triangle A B C ABC , tan A + tan B + tan C = 6 \tan A+\tan B+\tan C=6 , then cot A cot B cot C = k 6 \cot A \cot B \cot C= \dfrac k6 . Find k k .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Aug 17, 2017

For angles in a triangle or A + B + C = 18 0 A+B+C=180^\circ , then tan A + tan B + tan C = tan A tan B tan C \tan A + \tan B + \tan C = \tan A \tan B \tan C . Since tan A + tan B + tan C = 6 \tan A + \tan B + \tan C = 6 tan A tan B tan C = 6 \implies \tan A \tan B \tan C = 6 and cot A cot B cot C = 1 tan A tan B tan C = 1 6 \cot A \cot B \cot C = \dfrac 1{\tan A \tan B \tan C} = \dfrac 16 . k = 1 \implies k = \boxed{1} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...