A geometry problem by Aakhyat Singh

Geometry Level 3

cos 4 0 + cos 8 0 + cos 16 0 + cos 24 0 = ? \large \cos 40^\circ + \cos 80^\circ + \cos 160^\circ + \cos 240^\circ = \ ?


The answer is -0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Aug 16, 2017

X = cos 4 0 + cos 8 0 + cos 16 0 + cos 24 0 Note that cos ( 18 0 x ) = cos x = cos ( 6 0 2 0 ) + cos ( 6 0 + 2 0 ) cos 2 0 cos 6 0 = cos 6 0 cos 2 0 + sin 6 0 sin 2 0 + cos 6 0 cos 2 0 sin 6 0 sin 2 0 cos 2 0 cos 6 0 = 2 cos 6 0 cos 2 0 cos 2 0 cos 6 0 = 2 × 1 2 × cos 2 0 cos 2 0 1 2 = 1 2 = 0.5 \begin{aligned} X & = \cos 40^\circ + \cos 80^\circ + {\color{#3D99F6}\cos 160^\circ} + {\color{#3D99F6}\cos 240^\circ} \quad \quad \quad \quad \small \color{#3D99F6} \text{Note that } \cos (180^\circ - x) = - \cos x \\ & = \cos (60^\circ - 20^\circ) + \cos (60^\circ + 20^\circ) \color{#3D99F6} - \cos 20^\circ - \cos 60^\circ \\ & = \cos 60^\circ \cos 20^\circ + \sin 60^\circ \sin 20^\circ + \cos 60^\circ \cos 20^\circ - \sin 60^\circ \sin 20^\circ - \cos 20^\circ - \cos 60^\circ \\ & = 2 \cos 60^\circ \cos 20^\circ - \cos 20^\circ - \cos 60^\circ \\ & = 2 \times \frac 12 \times \cos 20^\circ - \cos 20^\circ - \frac 12 \\ & = - \frac 12 = \boxed{-0.5} \end{aligned}


Alternative Solution

X = cos 4 0 + cos 8 0 + cos 16 0 + cos 24 0 = cos 2 π 9 + cos 4 π 9 + cos 8 π 9 + cos 12 π 9 Note that cos ( 2 π x ) = cos x = cos 2 π 9 + cos 4 π 9 + cos 6 π 9 + cos 8 π 9 See note: k = 0 n 1 cos ( 2 k 2 n + 1 π ) = 1 2 = 1 2 = 0.5 \begin{aligned} X & = \cos 40^\circ + \cos 80^\circ + \cos 160^\circ + \cos 240^\circ \\ & = \cos \frac {2\pi}9 + \cos \frac {4\pi}9 + \cos \frac {8\pi}9 + \color{#3D99F6}\cos \frac {12\pi}9 & \small \color{#3D99F6} \text{Note that }\cos (2\pi -x) = \cos x \\ & = \cos \frac {2\pi}9 + \cos \frac {4\pi}9 + {\color{#3D99F6}\cos \frac {6\pi}9} + \cos \frac {8\pi}9 & \small \color{#3D99F6} \text{See note: }\sum_{k=0}^{n-1} \cos \left(\frac {2k}{2n+1}\pi \right) = - \frac 12 \\ & = - \frac 12 = \boxed{-0.5} \end{aligned}


Note: See here for the proof for k = 0 n 1 cos ( 2 k 2 n + 1 π ) = 1 2 \displaystyle \sum_{k=0}^{n-1} \cos \left(\frac {2k}{2n+1}\pi \right) = - \frac 12 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...