A geometry problem by Aakhyat Singh

Geometry Level pending

If sin(B+C-A),sin(C+A-B) and sin(A+B-C) are in AP, then cotA,cotB,cotC are in

GP NOTA HP AP

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hosam Hajjir
Oct 19, 2017

Since sin ( b + c a ) , sin ( c + a b ) , sin ( a + b c ) \sin(b + c - a) , \sin(c + a - b) , \sin(a + b - c) are in arithmetic progression, then it follows that,

sin ( a + b c ) sin ( c + a b ) = sin ( c + a b ) sin ( b + c a ) \sin(a+b-c) - \sin(c + a - b) = \sin(c + a - b) - \sin(b + c - a)

Now, for any two angles X and Y, we have the following identity,

sin X sin Y = sin ( X + Y ) sin ( X Y ) = 2 cos X sin Y \sin X - \sin Y = \sin(X' + Y') - \sin(X' - Y') = 2 \cos X' \sin Y' , where X = 1 2 ( X + Y ) X' = \dfrac{1}{2} (X + Y) and Y = 1 2 ( X Y ) Y' = \dfrac{1}{2} (X - Y)

Using this identity in the above equality,

sin ( a + b c ) sin ( c + a b ) = 2 cos ( a ) sin ( b c ) \sin(a+b-c) - \sin(c + a - b) = 2 \cos (a) \sin( b - c )

And,

sin ( c + a b ) sin ( b + c a ) = 2 cos ( c ) sin ( a b ) \sin(c + a - b) - \sin(b + c - a)= 2 \cos(c ) \sin(a - b)

Hence,

cos a sin ( b c ) = cos c sin ( a b ) \cos a \sin(b-c) = \cos c \sin(a - b)

Expanding,

cos a . ( sin b cos c cos b sin c ) = cos c ( sin a cos b cos a sin b ) \cos a . ( \sin b \cos c - \cos b \sin c ) = \cos c ( \sin a \cos b - \cos a \sin b )

Now divide through by cos a cos b cos c \cos a \cos b \cos c , you get,

tan b tan c = tan a tan b \tan b - \tan c = \tan a - \tan b

Negate it, to obtain,

tan b tan a = tan c tan b \tan b - \tan a = \tan c - \tan b

Thus, tan a , tan b , tan c \tan a , \tan b, \tan c are in arithmetic progression, therefore, their reciprocals , cot a , cot b , cot c \cot a , \cot b , \cot c are in harmonic progression.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...