If sin(B+C-A),sin(C+A-B) and sin(A+B-C) are in AP, then cotA,cotB,cotC are in
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Since sin ( b + c − a ) , sin ( c + a − b ) , sin ( a + b − c ) are in arithmetic progression, then it follows that,
sin ( a + b − c ) − sin ( c + a − b ) = sin ( c + a − b ) − sin ( b + c − a )
Now, for any two angles X and Y, we have the following identity,
sin X − sin Y = sin ( X ′ + Y ′ ) − sin ( X ′ − Y ′ ) = 2 cos X ′ sin Y ′ , where X ′ = 2 1 ( X + Y ) and Y ′ = 2 1 ( X − Y )
Using this identity in the above equality,
sin ( a + b − c ) − sin ( c + a − b ) = 2 cos ( a ) sin ( b − c )
And,
sin ( c + a − b ) − sin ( b + c − a ) = 2 cos ( c ) sin ( a − b )
Hence,
cos a sin ( b − c ) = cos c sin ( a − b )
Expanding,
cos a . ( sin b cos c − cos b sin c ) = cos c ( sin a cos b − cos a sin b )
Now divide through by cos a cos b cos c , you get,
tan b − tan c = tan a − tan b
Negate it, to obtain,
tan b − tan a = tan c − tan b
Thus, tan a , tan b , tan c are in arithmetic progression, therefore, their reciprocals , cot a , cot b , cot c are in harmonic progression.