Trigonometry!!

Geometry Level 2

Suppose a a is a real number such that:

sin ( π cos a ) = cos ( π sin a ) \sin(\pi \cos a) = \cos(\pi \sin a) .

Evaluate 35 sin 2 ( 2 a ) + 84 cos 2 ( 4 a ) = ? 35 \sin^2(2a) + 84 \cos^2(4a)=?

20 24 30 34 21

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

From the given equation we get sin a + cos a = 1 2 \sin a+\cos a=\dfrac{1}{2} , or sin 2 a = 3 4 \sin {2a}=-\dfrac{3}{4} . So cos 4 a = 1 8 \cos {4a}=-\dfrac{1}{8} . Therefore the given expression equals 35 × 9 16 + 84 × 1 64 = 21 35\times \dfrac{9}{16}+84\times \dfrac{1}{64}=\boxed {21}

Amal Hari
Nov 9, 2019

cos ( π 2 θ ) = sin θ \cos \left( \frac{\pi}{2} -\theta\right) =\sin \theta

cos ( π 2 π cos a ) = cos ( π sin a ) \cos\left(\frac{\pi}{2} -\pi \cos a\right) =\cos\left( \pi \sin a\right)

( π 2 π cos a ) = ( π sin a ) \left(\frac{\pi}{2} -\pi \cos a\right) =\left( \pi \sin a\right)

π 2 = π sin a + π cos a \frac{\pi}{2} =\pi \sin a+\pi \cos a

remove π \pi and square equation:

1 4 = 1 + sin 2 a \frac{1}{4} =1+ \sin 2a

sin 2 a = 3 4 \sin 2a = -\frac{3}{4}

solving for a we will get approximately 24.29 5 -24.295 ^{\circ}

evaluating the expression with this value gives 20.9999 21 20.9999 \approx 21

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...