Trigonometry! #25

Geometry Level 3

If tan θ = 4 3 \tan \theta = \frac {-4}{3} , then sin θ \sin \theta is

This problem is part of the set Trigonometry .

None of these 4 5 \frac {-4}{5} , but not 4 5 \frac {4}{5} 4 5 \frac {4}{5} , but not 4 5 \frac {-4}{5} 4 5 \frac {-4}{5} , or 4 5 \frac {4}{5}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Omkar Kulkarni
Feb 8, 2015

tan θ = 4 3 \tan\theta=-\frac{4}{3}

cot 2 θ = 9 16 \cot^{2}\theta=\frac{9}{16}

csc 2 θ 1 = 9 16 \csc^{2}\theta-1=\frac{9}{16}

1 sin 2 θ = 9 16 + 1 \frac{1}{\sin^{2}\theta}=\frac{9}{16}+1

sin 2 θ = 16 9 + 16 \sin^{2}\theta=\frac{16}{9+16}

sin θ = 16 25 \sin\theta=\sqrt{\frac{16}{25}}

sin θ = ± 4 5 \boxed{\sin\theta=\pm\frac{4}{5}}

Yannick Ruffiner
Nov 8, 2018

tan θ = 4 3 = sin θ cos θ cos θ = 3 4 sin θ \tan \theta = -\frac{4}{3} = \frac{\sin \theta}{\cos \theta} \quad\Leftrightarrow\quad \cos \theta = -\frac{3}{4} \sin \theta

1 = sin 2 θ + cos 2 θ = sin 2 θ ( 1 + 9 16 ) = sin 2 θ 25 16 sin 2 θ = 16 25 sin θ = ± 4 5 1 = \sin^2 \theta + \cos^2 \theta = \sin^2 \theta \cdot \left( 1 + \frac{9}{16} \right) = \sin^2 \theta \cdot \frac{25}{16} \quad\Leftrightarrow\quad \sin^2 \theta = \frac{16}{25} \;\Leftrightarrow\; \sin \theta = \pm \frac{4}{5}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...