Trigonometry! #30

Geometry Level 4

In Δ A B C \Delta ABC , D D is the midpoint of B C BC . If A D A C AD \perp AC , then cos A cos C \cos A \cos C is equivalent to which of the following expressions?

This problem is part of the set Trigonometry .

2 ( c 2 a 2 ) 3 a c \frac {2(c^2 - a^2 )}{3ac} 3 ( c 2 a 2 ) 2 a c \frac {3(c^2 - a^2 )}{2ac} 2 ( a 2 c 2 ) 3 a c \frac {2(a^2 - c^2 )}{3ac} 3 ( a 2 c 2 ) 2 a c \frac {3(a^2 - c^2 )}{2ac}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Omkar Kulkarni
Feb 9, 2015

By cosine rule,

cos A = b 2 + c 2 a 2 2 b c \cos A = \frac{b^{2}+c^{2}-a^{2}}{2bc}

cos C = a 2 + b 2 c 2 2 a b \cos C=\frac{a^{2}+b^{2}-c^{2}}{2ab}

In Δ A D C \Delta ADC , cos C = A C D C = 2 b a \cos C = \frac{AC}{DC}=\frac{2b}{a}

cos C = 2 b a = a 2 + b 2 c 2 2 a b \therefore\cos C=\frac{2b}{a}=\frac{a^{2}+b^{2}-c^{2}}{2ab}

a 2 c 2 = 3 b 2 \Rightarrow a^{2}-c^{2}=3b^{2}

cos A = b 2 3 b 2 2 b c = 2 b 2 2 b c = b c \therefore \cos A = \frac{b^{2}-3b^{2}}{2bc}=-\frac{2b^{2}}{2bc}=-\frac{b}{c}

cos A cos C = ( 2 b a ) ( b c ) = 2 b 2 a c \therefore \cos A \cos C = \left(\frac{2b}{a}\right)\left(-\frac{b}{c}\right)=\frac{-2b^{2}}{ac}

cos A cos C = 2 ( c 2 a 2 ) 3 a c \boxed{\cos A \cos C = \frac{2(c^{2}-a^{2})}{3ac}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...