Find the value of cos ( 2 cos − 1 x + sin − 1 x ) at x = 5 1 , where 0 ≤ cos − 1 x ≤ π and 2 − π ≤ sin − 1 x ≤ 2 π .
If your answer is in the form of − c a b , where b is a square free integer, enter the value of a + b + c .
This problem is part of the set Trigonometry .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
c o s ( 2 π + c o s − 1 x ) = − s i n ( c o s − 1 x ) = − 1 − x 2
= 5 − 2 6
Problem Loading...
Note Loading...
Set Loading...
Let α = cos − 1 5 1 and β = = sin − 1 5 1 . Then, we have:
cos ( 2 cos − 1 5 1 + sin − 1 5 1 ) = cos ( 2 α + β )
= cos 2 α cos β − sin 2 α sin β
= ( cos 2 α − 1 ) cos β − 2 sin α cos α sin β
= ( 2 5 1 − 1 ) cos β − 2 ( 2 5 1 ) sin α
= ( 2 5 1 − 1 ) 1 − 2 5 1 − 2 5 2 1 − 2 5 1
= ( − 2 5 2 3 − 2 5 2 ) 2 5 2 4 = − 5 2 6
⇒ a + b + c = 2 + 6 + 5 = 1 3