Trigonometry! #39

Geometry Level 3

Without using tables, determine the value of csc 1 2 csc 4 8 csc 5 4 \csc 12^{\circ} \csc 48^{\circ} \csc 54^{\circ}

This problem is part of the set Trigonometry .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mas Mus
Mar 12, 2015

Let A = sin 1 2 sin 4 8 sin 5 4 A=\sin 12^{\circ} \sin 48^{\circ} \sin 54^{\circ}

= 1 2 [ cos 6 0 cos 3 6 ] sin 5 4 =-\frac{1}{2}[\cos 60^{\circ}- \cos 36^{\circ}] \sin 54^{\circ}

= 1 4 sin 5 4 + 1 2 cos 3 6 sin 5 4 =-\frac{1}{4}\sin 54^{\circ}+\frac{1}{2}\cos 36^{\circ} \sin 54^{\circ}

= 1 4 sin 5 4 + 1 4 [ sin 9 0 + sin 1 8 ] =-\frac{1}{4}\sin 54^{\circ}+\frac{1}{4}[\sin 90^{\circ} +\sin 18^{\circ}]

= 1 4 1 4 [ sin 5 4 sin 1 8 ] = 1 4 1 4 [ cos 3 6 sin 3 6 cos 1 8 ] =\frac{1}{4}-\frac{1}{4}[\sin54^{\circ}-\sin18^{\circ}]=\frac{1}{4}-\frac{1}{4}[\frac{\cos36^{\circ}\sin36^{\circ}}{\cos18^{\circ}}]

= 1 4 1 4 × 1 2 [ sin 7 2 cos 1 8 ] = 1 4 1 8 = 1 8 =\frac{1}{4}-\frac{1}{4}\times\frac{1}{2}[\frac{\sin72^{\circ}}{\cos18^{\circ}}]=\frac{1}{4}-\frac{1}{8}=\frac{1}{8}

Now, csc 1 2 csc 4 8 csc 5 4 = 1 A = 8 \csc 12^{\circ} \csc 48^{\circ} \csc 54^{\circ}=\frac{1}{A}=\boxed8

Omkar Kulkarni
Feb 14, 2015

sin 1 2 sin 4 8 sin 5 4 = 1 2 ( 2 sin 1 2 sin 4 8 ) sin 5 4 = 1 2 ( cos 3 6 cos 6 0 ) sin 5 4 = 1 2 ( cos 3 6 1 2 ) sin 5 4 = 1 4 ( 2 cos 3 6 sin 5 4 sin 5 4 ) = 1 4 ( sin 9 0 + sin 1 8 sin 5 4 ) = 1 4 ( 1 + 5 1 4 5 + 1 4 ) = 1 4 ( 1 + 5 1 5 1 4 ) = 1 4 ( 1 1 2 ) = 1 8 \sin12^{\circ}\sin48^{\circ}\sin54^{\circ} \\ =\frac{1}{2}(2\sin12^{\circ}\sin48^{\circ})\sin54^{\circ} \\ = -\frac{1}{2}(\cos36^{\circ}-\cos60^{\circ})\sin54^{\circ} \\ = -\frac{1}{2}\left(\cos36^{\circ}-\frac{1}{2}\right)\sin54^{\circ} \\ = -\frac{1}{4}(2\cos36^{\circ}\sin54^{\circ}-\sin54^{\circ}) \\ = -\frac{1}{4}(\sin90^{\circ}+\sin18^{\circ}-\sin54^{\circ}) \\ = -\frac{1}{4}\left(1+\frac{\sqrt{5}-1}{4}-\frac{\sqrt{5}+1}{4}\right) \\ = -\frac{1}{4}\left(1+\frac{\sqrt{5}-1-\sqrt{5}-1}{4}\right) \\ = -\frac{1}{4}\left(1-\frac{1}{2}\right) \\ = \boxed{\frac{1}{8}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...