Trigonometry! #41

Geometry Level 3

Find the intersection of the curves y = cos x y=\cos x and y = sin 3 x y = \sin 3x for π 2 x π 2 -\frac {\pi}{2}≤x≤\frac {\pi}{2} .

Enter the sum of the x-coordinates of the intersections.

This problem is part of the set Trigonometry .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jan 21, 2015

{ y = cos x y = sin 3 x \begin{cases} y = \cos {x} \\ y = \sin {3x} \end{cases}

cos x = sin 3 x = sin 2 x + x = 2 sin x cos 2 x + sin x ( 2 cos 2 x 1 ) = 4 sin x cos 2 x sin x \begin{aligned} \Rightarrow \cos{x} & = \sin{3x} \\ & = \sin {2x+x} \\ & = 2\sin{x}\cos^2{x}+\sin{x}(2\cos^2{x}-1) \\ & = 4\sin{x}\cos^2{x} -\sin {x} \end{aligned}

cot x = 4 cos 2 x 1 = 4 sec 2 x 1 \Rightarrow \cot{x} = 4\cos^2{x} - 1 = \dfrac {4}{\sec^2{x}} -1

1 tan x = 3 tan 2 x 1 + tan 2 x \Rightarrow \dfrac {1} {\tan{x}} = \dfrac {3-\tan^2{x}}{1+\tan^2{x}}

tan 3 x + tan 2 x 3 tan x + 1 = 0 \Rightarrow \tan^3 {x} + \tan^2 {x} - 3 \tan {x} + 1 = 0

( tan x 1 ) ( tan 2 x + 2 tan x 1 ) = 0 \Rightarrow (\tan {x}-1)(\tan^2 {x} + 2 \tan {x} - 1) = 0

{ tan x = 1 x = π 4 tan x = 1 + 2 x = π 8 tan x = 1 2 x = 3 π 8 π 4 + π 8 3 π 8 = 0 \Rightarrow \begin{cases} \tan{x} = 1 & \Rightarrow x = \frac {\pi}{4} \\ \tan{x} = -1+\sqrt{2} & \Rightarrow x = \frac {\pi}{8} \\ \tan{x} = -1-\sqrt{2} & \Rightarrow x = -\frac {3\pi}{8} \end{cases} \Rightarrow \frac {\pi}{4} + \frac {\pi}{8} - \frac {3\pi}{8} = \boxed{0}

Mark Hennings
Jan 3, 2018

We have sin 3 x = cos x sin 3 x sin ( 1 2 π x ) = 0 2 cos ( x + 1 4 π ) sin ( 2 x 1 4 π ) = 0 \begin{aligned} \sin3x & = \; \cos x \\ \sin3x - \sin(\tfrac12\pi-x) & = \; 0 \\ 2\cos(x + \tfrac14\pi)\sin(2x - \tfrac14\pi) & = \; 0 \end{aligned} and so either x + 1 4 π = ( n + 1 2 ) π x + \tfrac14\pi = (n+\tfrac12)\pi or 2 x 1 4 π = n π 2x - \tfrac14\pi = n\pi for some integer n n . The only solutions in the interval ( 1 2 π , 1 2 π ) (-\tfrac12\pi,\tfrac12\pi) are 1 4 π \tfrac14\pi , 1 8 π \tfrac18\pi and 3 8 π -\tfrac38\pi , which makes the answer 0 \boxed{0} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...