Find the intersection of the curves y = cos x and y = sin 3 x for − 2 π ≤ x ≤ 2 π .
Enter the sum of the x-coordinates of the intersections.
This problem is part of the set Trigonometry .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
We have sin 3 x sin 3 x − sin ( 2 1 π − x ) 2 cos ( x + 4 1 π ) sin ( 2 x − 4 1 π ) = cos x = 0 = 0 and so either x + 4 1 π = ( n + 2 1 ) π or 2 x − 4 1 π = n π for some integer n . The only solutions in the interval ( − 2 1 π , 2 1 π ) are 4 1 π , 8 1 π and − 8 3 π , which makes the answer 0 .
Problem Loading...
Note Loading...
Set Loading...
{ y = cos x y = sin 3 x
⇒ cos x = sin 3 x = sin 2 x + x = 2 sin x cos 2 x + sin x ( 2 cos 2 x − 1 ) = 4 sin x cos 2 x − sin x
⇒ cot x = 4 cos 2 x − 1 = sec 2 x 4 − 1
⇒ tan x 1 = 1 + tan 2 x 3 − tan 2 x
⇒ tan 3 x + tan 2 x − 3 tan x + 1 = 0
⇒ ( tan x − 1 ) ( tan 2 x + 2 tan x − 1 ) = 0
⇒ ⎩ ⎪ ⎨ ⎪ ⎧ tan x = 1 tan x = − 1 + 2 tan x = − 1 − 2 ⇒ x = 4 π ⇒ x = 8 π ⇒ x = − 8 3 π ⇒ 4 π + 8 π − 8 3 π = 0