Trigonometry! 47

Geometry Level 4

For 0 < ϕ < π 2 0<\phi<\frac {\pi}{2} , if x = n = 0 cos 2 n ϕ x=\displaystyle \sum_{n=0}^{\infty} \cos^{2n} \phi y = n = 0 sin 2 n ϕ y=\displaystyle \sum_{n=0}^{\infty} \sin^{2n} \phi z = n = 0 cos 2 n ϕ sin 2 n ϕ z=\displaystyle \sum_{n=0}^{\infty} \cos^{2n} \phi \sin^{2n} \phi then which of the following holds true?

  1. x y z = x z + y xyz=xz+y

  2. x y z = x y + z xyz=xy+z

  3. x y z = x + y + z xyz=x+y+z

  4. x y z = y z + x xyz=yz+x

Note that two or three options are correct. Enter the sum of serial numbers of the correct options.

This problem is part of the set Trigonometry .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Prakhar Gupta
Feb 3, 2015

Using Infinite GP formula we have:- x = 1 1 cos 2 x = 1 sin 2 x x = \dfrac{1}{1-\cos^{2}x} = \dfrac{1}{\sin^{2}x} y = 1 1 sin 2 x = 1 cos 2 x y = \dfrac{1}{1-\sin^{2}x} = \dfrac{1}{\cos^{2}x} z = 1 1 sin 2 x cos 2 x z = \dfrac{1}{1-\sin^{2}x \cos^{2}x} We observe LHS:- x y z = 1 sin 2 x cos 2 x ( 1 sin 2 x cos 2 x ) xyz = \dfrac{1}{\sin^{2}x \cos^{2}x(1-\sin^{2}x \cos^{2}x)} x y z = sin 2 x cos 2 x + ( 1 sin 2 x cos 2 x ) sin 2 x cos 2 x ( 1 sin 2 x cos 2 x ) xyz = \dfrac{\sin^{2}x \cos^{2}x +(1-\sin^{2}x \cos^{2}x)}{\sin^{2}x \cos^{2}x(1-\sin^{2}x \cos^{2}x)} x y z = 1 1 sin 2 x cos 2 x + 1 sin 2 x cos 2 x xyz = \dfrac{1}{1-\sin^{2}x \cos^{2}x} + \dfrac{1}{\sin^{2}x \cos^{2}x} x y z = z + x y xyz = z + xy Also :- x y z = z + 1 sin 2 x cos 2 x xyz = z +\dfrac{1}{\sin^{2}x \cos^{2}x} x y z = z + sin 2 x + cos 2 x sin 2 x cos 2 x xyz = z + \dfrac{\sin^{2}x + \cos^{2}x}{\sin^{2}x \cos^{2}x} x y z = z + 1 sin 2 x + 1 cos 2 x xyz = z + \dfrac{1}{\sin^{2}x} + \dfrac{1}{\cos^{2}x} x y z = z + x + y xyz = z + x + y

what if we divide the numerator and denominator of "z" by first (cosx)^2and then by (sinx)^2.we get cosecx=secx which implies that x=45?

avn bha - 6 years ago

Log in to reply

I'm sorry, I didn't get you. Can you please elaborate.

Prakhar Gupta - 6 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...