If cos α = 2 − cos β 2 cos β − 1 , what is
tan 2 α × cot 2 β ?
Give your answer to 2 decimal places.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
There must be a much shorter solution. Anyway i solved it in the following way
To find tan ( 2 α ) × cot ( 2 β ) or we can find
s i n α 1 − cos α × 1 − cos β sin β
Firstly
⇒ 1 − c o s α = 1 − ( 2 − cos β 2 cos β − 1 )
⇒ 1 − cos α = 2 − cos β 3 ( 1 − cos β ) . . . . . . . . . . . ( 1 )
Now to find sin α
1 − sin 2 α = 2 − cos β 2 cos β − 1
On squaring and simplifying
sin α = 2 − cos β 3 ( sin β ) . . . . . . . . . . . . . . . . . . . . ( 2 )
Note: I took the positive value because that matches with the answer.
Apply ( 1 ) / ( 2 ) and simplify to get
s i n α 1 − cos α × 1 − cos β sin β = 3
Problem Loading...
Note Loading...
Set Loading...
We can solve the problem using Weierstrass or tangent half-angle substitution which gives that cos x = 1 + t 2 1 − t 2 , where t = tan 2 x . Let a = tan 2 α and b = tan 2 β ; then tan 2 α cot 2 β = b a .
Now we have:
cos α 1 + a 2 1 − a 2 ( 1 − a 2 ) ( 1 + 3 b 2 ) 1 − a 2 + 3 b 2 − 3 a 2 b 2 6 b 2 b 2 a 2 ⟹ b a = tan 2 α cot 2 β = 2 − cos β 2 cos β − 1 = 2 − 1 + b 2 1 − b 2 2 ( 1 + b 2 1 − b 2 ) − 1 = 2 + 2 b 2 − 1 + b 2 2 − 2 b 2 − 1 − b 2 = 1 + 3 b 2 1 − 3 b 2 = ( 1 + a 2 ) ( 1 − 3 b 2 ) = 1 + a 2 − 3 b 2 − 3 a 2 b 2 = 2 a 2 = 3 = 3 ≈ 1 . 7 3 2