Trigonometry

Geometry Level 3

If cos α = 2 cos β 1 2 cos β \cos \alpha = \dfrac{ 2 \cos \beta - 1 } { 2 - \cos \beta } , what is

tan α 2 × cot β 2 ? \tan \frac{\alpha}{2} \times \cot \frac{ \beta } { 2} ?

Give your answer to 2 decimal places.


The answer is 1.73.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Aug 22, 2016

We can solve the problem using Weierstrass or tangent half-angle substitution which gives that cos x = 1 t 2 1 + t 2 \cos x = \dfrac {1-t^2}{1+t^2} , where t = tan x 2 t = \tan \frac x2 . Let a = tan α 2 a = \tan \frac \alpha 2 and b = tan β 2 b = \tan \frac \beta 2 ; then tan α 2 cot β 2 = a b \tan \frac \alpha 2 \cot \frac \beta 2 = \dfrac ab .

Now we have:

cos α = 2 cos β 1 2 cos β 1 a 2 1 + a 2 = 2 ( 1 b 2 1 + b 2 ) 1 2 1 b 2 1 + b 2 = 2 2 b 2 1 b 2 2 + 2 b 2 1 + b 2 = 1 3 b 2 1 + 3 b 2 ( 1 a 2 ) ( 1 + 3 b 2 ) = ( 1 + a 2 ) ( 1 3 b 2 ) 1 a 2 + 3 b 2 3 a 2 b 2 = 1 + a 2 3 b 2 3 a 2 b 2 6 b 2 = 2 a 2 a 2 b 2 = 3 a b = tan α 2 cot β 2 = 3 1.732 \begin{aligned} \cos \alpha & = \frac {2 \cos \beta -1}{2 - \cos \beta} \\ \frac {1-a^2}{1+a^2} & = \frac {2\left(\frac {1-b^2}{1+b^2}\right)-1}{2-\frac {1-b^2}{1+b^2}} \\ & = \frac {2-2b^2-1-b^2}{2+2b^2-1+b^2} \\ & = \frac {1-3b^2}{1+3b^2} \\ (1-a^2)(1+3b^2) & = (1+a^2)(1-3b^2) \\ 1-a^2+3b^2-3a^2b^2 & = 1+a^2-3b^2-3a^2b^2 \\ 6b^2 & = 2a^2 \\ \frac {a^2}{b^2} & = 3 \\ \implies \frac ab = \tan \frac \alpha 2 \cot \frac \beta 2 & = \sqrt 3 \approx \boxed{1.732} \end{aligned}

Tanishq Varshney
Aug 20, 2016

There must be a much shorter solution. Anyway i solved it in the following way

To find tan ( α 2 ) × cot ( β 2 ) \large{\tan\left(\frac{\alpha}{2}\right) \times \cot\left(\frac{\beta}{2}\right)} or we can find

1 cos α s i n α × sin β 1 cos β \large{\frac{1- \cos \alpha}{sin \alpha}\times \frac{\sin \beta}{1-\cos \beta}}

Firstly

1 c o s α = 1 ( 2 cos β 1 2 cos β ) \large{\Rightarrow 1-cos \alpha=1-\left(\frac{ 2 \cos \beta-1}{2-\cos \beta}\right)}

1 cos α = 3 ( 1 cos β ) 2 cos β . . . . . . . . . . . ( 1 ) \large{\Rightarrow 1-\cos \alpha=\frac{3(1-\cos \beta)}{2-\cos \beta}...........(1)}

Now to find sin α \sin \alpha

1 sin 2 α = 2 cos β 1 2 cos β \large{\sqrt{1-\sin^{2} \alpha}= \frac{ 2 \cos \beta-1}{2-\cos \beta}}

On squaring and simplifying

sin α = 3 ( sin β ) 2 cos β . . . . . . . . . . . . . . . . . . . . ( 2 ) \large{\sin \alpha= \frac{\sqrt{3}(\sin \beta)}{2-\cos \beta}....................(2)}

Note: I took the positive value because that matches with the answer.

Apply ( 1 ) / ( 2 ) (1)/(2) and simplify to get

1 cos α s i n α × sin β 1 cos β = 3 \large{\frac{1- \cos \alpha}{sin \alpha}\times \frac{\sin \beta}{1-\cos \beta}=\sqrt{3}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...