Trigonometry! #51

Geometry Level 2

Which of the options is equivalent to the following expression? cot θ sin ( π 2 θ ) cos ( π 2 θ ) \cot \theta - \sin \left (\frac {\pi}{2} -\theta \right) \cos \left (\frac {\pi}{2} - \theta \right)

This problem is part of the set Trigonometry .

tan 2 θ \tan ^{2} \theta cot 2 θ \cot ^{2} \theta sin θ cos 2 θ \sin \theta \cos ^{2} \theta cot θ cos 2 θ \cot \theta \cos ^{2} \theta

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

By complementary angles:

sin ( π 2 θ ) = cos θ cos ( π 2 θ ) = sin θ \sin { \left( \frac { \pi }{ 2 } -\theta \right) } =\cos { \theta } \\ \cos { \left( \frac { \pi }{ 2 } -\theta \right) } =\sin { \theta }

Replacing in the original expression:

cot θ cos θ sin θ cos θ sin θ cos θ sin θ 1 sin θ [ cos θ cos θ ( sin θ ) 2 ] \cot { \theta } -\cos { \theta } \sin { \theta } \\ \frac { \cos { \theta } }{ \sin { \theta } } -\cos { \theta } \sin { \theta } \\ \frac { 1 }{ \sin { \theta } } \left[ \cos { \theta } -\cos { \theta } { \left( \sin { \theta } \right) }^{ 2 } \right]

By trigonometry identity:

( sin θ ) 2 = 1 ( cos θ ) 2 { \left( \sin { \theta } \right) }^{ 2 }=1-{ \left( \cos { \theta } \right) }^{ 2 }

1 sin θ [ cos θ cos θ ( cos θ ) 3 ] cos θ sin θ ( cos θ ) 2 cot θ ( cos θ ) 2 \frac { 1 }{ \sin { \theta } } \left[ \cos { \theta } -\cos { \theta } -{ \left( \cos { \theta } \right) }^{ 3 } \right] \\ \frac { \cos { \theta } }{ \sin { \theta } } { \left( \cos { \theta } \right) }^{ 2 }\\ \cot { \theta } { \left( \cos { \theta } \right) }^{ 2 }

Harsh Soni
Jan 24, 2015

Direct by Hit & Trial Put thetta=π\4 Or try any other value 0f thetta

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...