Trigonometry! #58

Geometry Level 4

3 sin 2 x + 2 cos 2 x + 3 1 sin 2 x + 2 sin 2 x = 28 3^{\sin 2x + 2\cos^{2} x}+3^{1-\sin 2x+2\sin^{2}x}=28

Find the number of solutions to the above equation if 0 x 2 π 0 \leq x \leq 2\pi .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Omkar Kulkarni
Feb 21, 2015

3 sin 2 x + 2 cos 2 x + 3 1 sin 2 x + 2 sin 2 x = 28 3^{\sin 2x + 2\cos^{2} x}+3^{1-\sin 2x + 2\sin^{2}x}=28

3 sin 2 x + 2 cos 2 x + 3 3 ( sin 2 x + 2 cos 2 x ) = 28 3^{\sin 2x + 2\cos^{2} x}+3^{3-(\sin 2x + 2\cos^{2}x)}=28

3 sin 2 x + 2 cos 2 x + 3 3 3 sin 2 x + 2 cos 2 x = 28 3^{\sin 2x + 2\cos^{2}x} + \frac{3^{3}}{3^{\sin 2x + 2\cos^{2}x}}=28

Now, let 3 sin 2 x + 2 cos 2 x = a 3^{\sin 2x + 2\cos^{2} x}=a .

a + 27 a = 28 \therefore a+\frac{27}{a}=28

a 2 28 a + 27 = 0 a^{2}-28a+27=0

( a 27 ) ( a 1 ) = 0 (a-27)(a-1)=0

So either a = 27 a=27 or a = 1 a=1 .

For a = 27 a=27 , we have 3 sin 2 x + 2 cos 2 x = 3 3 sin 2 x + 2 cos 2 x = 3 3^{\sin 2x + 2\cos^{2}x}=3^{3}\Rightarrow\sin 2x + 2\cos^{2} x = 3 .

As the maximum values of the sine and cosine functions are 1 1 , this equation holds true only if sin 2 x = c o s 2 x = 1 \sin 2x=cos^{2}x=1 , which is not possible. Hence this equation has no roots.

So we have a = 3 a=3

3 sin 2 x + 2 cos 2 x = 3 3^{\sin 2x + 2\cos^{2} x}=3

sin 2 x + 2 cos 2 x = 0 \sin 2x + 2\cos^{2}x=0

2 sin x cos x + 2 cos 2 x = 0 2\sin x\cos x + 2\cos^{2} x = 0

cos x ( sin x + cos x ) = 0 \cos x(\sin x + \cos x)=0

cos x = 0 o r sin x + cos x = 0 \cos x = 0 ~or~ \sin x + \cos x = 0

For cos x = 0 \cos x = 0 , x = π 2 , 3 π 2 x=\frac{\pi}{2},\frac{3\pi}{2}

For sin x + cos x = 0 \sin x + \cos x = 0 ,

1 2 sin x + 1 2 cos x = 0 \frac{1}{\sqrt{2}}\sin x + \frac{1}{\sqrt{2}}\cos x = 0

sin x cos π 4 + cos x sin π 4 = 0 \sin x\cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4} = 0

sin ( π 4 + x ) = sin 0 \sin \left(\frac{\pi}{4}+x\right)=\sin 0

x = 3 π 4 , 7 π 4 x=\frac{3\pi}{4},\frac{7\pi}{4}

Hence, the equation has four \boxed{\text{four}} roots.

For a =1 *

Anurag Pandey - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...