Trigonometry! #62

Geometry Level 3

Find the value of tan ( 2 tan 1 ( 1 5 ) π 4 ) \tan \left( 2\tan^{-1} \left(\frac {1}{5} \right) - \frac {\pi}{4} \right)

Express your answer in the form of a b -\frac {a}{b} where a a and b b are positive coprime integers, and enter the value of a + b a+b .

This problem is part of the set Trigonometry .


The answer is 24.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Omkar Kulkarni
Feb 21, 2015

First, we evaluate tan ( 2 tan 1 ( 1 5 ) ) = 2 tan ( tan 1 ( 1 5 ) ) 1 tan 2 ( tan 1 ( 1 5 ) ) = 2 5 1 ( 1 5 ) 2 = 2 5 24 25 = 5 12 \Large{\tan\left(2\tan^{-1}\left(\frac{1}{5}\right)\right) \\ = \frac{2\tan\left(\tan^{-1}\left(\frac{1}{5}\right)\right)}{1-\tan^{2}\left(\tan^{-1}\left(\frac{1}{5}\right)\right)} \\ = \frac{\frac{2}{5}}{1-\left(\frac{1}{5}\right)^{2}} \\ = \frac{\frac{2}{5}}{\frac{24}{25}} \\ = \frac{5}{12}}

Now, tan ( 2 tan 1 ( 1 5 ) π 4 ) = tan ( 2 tan 1 ( 1 5 ) ) tan ( π 4 ) 1 + ( tan ( 2 tan 1 ( 1 5 ) ) ) ( tan ( π 4 ) ) = 5 12 1 1 + ( 5 12 ) = 5 12 5 + 12 7 17 \Large{\tan\left(2\tan^{-1}\left(\frac{1}{5}\right)-\frac{\pi}{4}\right) \\ = \frac{\tan\left(2\tan^{-1}\left(\frac{1}{5}\right)\right)-\tan\left(\frac{\pi}{4}\right)}{1+\left(\tan\left(2\tan^{-1}\left(\frac{1}{5}\right)\right)\right)\left(\tan\left(\frac{\pi}{4}\right)\right)} \\ = \frac{\frac{5}{12}-1}{1+\left(\frac{5}{12}\right)} \\ =\frac{5-12}{5+12} \\ \boxed{-\frac{7}{17}}}

a little help here, could u pls help me understand the second part

ommkar priyadarshi - 4 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...