Trigonometry! #63

Geometry Level 5

In a Δ A B C \Delta ABC if a a , b b , c c (the sides of the triangle) are in A.P. then a possible value of A B C \angle ABC is

This problem is part of the set Trigonometry .

7 5 75^{\circ} 4 5 45^{\circ} 9 0 90^{\circ} 12 0 120^{\circ}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Shabarish Ch
Apr 8, 2015

Given condition is 2 b = a + c 2b = a + c .

Using sine formula, 2 sin B = sin C + sin A 2\sin B = \sin C + \sin A , or , 4 sin B 2 cos B 2 = 2 sin ( C + A 2 ) cos ( C A 2 ) 4\sin \frac{B}{2} \cos \frac{B}{2} = 2 \sin (\frac{C+A}{2}) \cos (\frac{C-A}{2}) , or 2 sin B 2 cos B 2 = sin ( π B 2 ) cos ( C A 2 ) 2\sin \frac{B}{2} \cos \frac{B}{2} = \sin (\frac{\pi - B}{2}) \cos (\frac{C-A}{2}) , or 2 sin B 2 cos B 2 = sin ( π 2 B 2 ) cos ( C A 2 ) 2\sin \frac{B}{2} \cos \frac{B}{2} = \sin (\frac{\pi }{2} - \frac{B}{2}) \cos (\frac{C-A}{2}) , or 2 sin B 2 cos B 2 = cos B 2 cos ( C A 2 ) 2\sin \frac{B}{2} \cos \frac{B}{2} = \cos \frac{B}{2} \cos (\frac{C-A}{2}) , or 2 sin B 2 = cos ( C A 2 ) 2\sin \frac{B}{2} = \cos (\frac{C-A}{2}) .

This implies that sin B 2 1 2 \sin \frac{B}{2} \leq \frac{1}{2} . Only one value from the options satisfies.

As the side lengths are in A.P. let them be a = b k , b a = b - k, b and c = b + k c = b + k for some real number k . k. Then with A B C \angle ABC being opposite side b b , we have by the Cosine rule that

b 2 = ( b k ) 2 + ( b + k ) 2 2 ( b k ) ( b + k ) cos ( A B C ) b^{2} = (b - k)^{2} + (b + k)^{2} - 2(b - k)(b + k)\cos(\angle ABC)

b 2 = 2 b 2 + 2 k 2 2 ( b 2 k 2 ) cos ( A B C ) \Longrightarrow b^{2} = 2b^{2} + 2k^{2} - 2(b^{2} - k^{2})\cos(\angle ABC)

cos ( A B C ) = b 2 + 2 k 2 2 ( b 2 k 2 ) . \Longrightarrow \cos(\angle ABC) = \dfrac{b^{2} + 2k^{2}}{2(b^{2} - k^{2})}.

Now as k 2 0 k^{2} \ge 0 this expression will achieve a minimum value at k = 0 k = 0 , i.e., when cos ( A B C ) = 1 2 \cos(\angle ABC) = \frac{1}{2} . Thus we are looking for angles A B C \angle ABC such that cos ( A B C ) 1 2 \cos(\angle ABC) \ge \frac{1}{2} on the interval [ 0 , 9 0 ] [0^{\circ}, 90^{\circ}] . The only such angles are those between 0 0^{\circ} and 6 0 60^{\circ} inclusive, so the only possible value for A B C \angle ABC from the given options is 4 5 \boxed{45^{\circ}} .

Comments: In order to have a non-degenerate triangle we will require that k < b . |k| \lt b. So assuming, without loss of generality, that k > 0 k \gt 0 , and letting k = r b k = rb for some positive real number r < 1 r \lt 1 , we see that

cos ( A B C ) = 1 + 2 r 2 2 ( 1 r 2 ) \cos(\angle ABC) = \dfrac{1 + 2r^{2}}{2(1 - r^{2})} .

Now since 1 2 cos ( A B C ) 1 \frac{1}{2} \le \cos(\angle ABC) \le 1 , we must have 0 r 1 2 0 \le r \le \frac{1}{2} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...