Trigonometry! 64

Geometry Level 4

If the area of a Δ A B C \Delta ABC is equal to a 2 ( b c ) 2 a^{2} - (b-c)^{2} then find the value of tan A \tan A .

a a , b b and c c are sides opposite to angles A A , B B and C C respectively.

Express your answer in the form of x y \frac {x}{y} where x x and y y are coprime integers, and enter the value of x + y x+y .


This problem is part of the set Trigonometry .


The answer is 23.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Nihar Mahajan
Sep 11, 2015

Let the area of Δ A B C \Delta ABC be denoted by Δ \Delta and its semiperimeter by s s .

Δ = a 2 ( b c ) 2 Δ = ( a + b c ) ( a b + c ) Δ = ( a + b + c 2 c ) ( a + b + c 2 b ) Δ = ( 2 s 2 c ) ( 2 s 2 b ) Δ = 4 ( s c ) ( s b ) Δ 2 = 16 ( s c ) 2 ( s b ) 2 s ( s a ) ( s b ) ( s c ) = 16 ( s c ) 2 ( s b ) 2 s ( s a ) = 16 ( s b ) ( s c ) ( s b ) ( s c ) s ( s a ) = 1 16 tan 2 A 2 = 1 16 tan A 2 = 1 4 tan A = 2 tan A 2 1 tan 2 A 2 tan A = 2 × 1 4 1 ( 1 4 ) 2 = 1 2 1 1 16 = 1 2 15 16 = 1 2 × 16 15 = 8 15 tan A = 8 15 \Delta = a^2-(b-c)^2 \\ \Rightarrow \Delta = (a+b-c)(a-b+c) \\ \Rightarrow \Delta = (a+b+c-2c)(a+b+c-2b) \\ \Rightarrow \Delta = (2s-2c)(2s-2b) \\ \Rightarrow \Delta = 4(s-c)(s-b) \\ \Rightarrow \Delta^2 = 16(s-c)^2(s-b)^2 \\ \Rightarrow s(s-a)(s-b)(s-c)= 16(s-c)^2(s-b)^2 \\ \Rightarrow s(s-a)=16(s-b)(s-c) \\ \Rightarrow \dfrac{(s-b)(s-c)}{s(s-a)} = \dfrac{1}{16} \\ \Rightarrow \tan^2 \dfrac{A}{2} = \dfrac{1}{16} \\ \Rightarrow \tan\dfrac{A}{2} = \dfrac{1}{4} \\ \because \tan A = \dfrac{2\tan\dfrac{A}{2}}{1-\tan^2\dfrac{A}{2}} \\ \Rightarrow \tan A = \dfrac{2\times \dfrac{1}{4}}{1-\left(\dfrac{1}{4}\right)^2} = \dfrac{\dfrac{1}{2}}{1-\dfrac{1}{16}} = \dfrac{\dfrac{1}{2}}{\dfrac{15}{16}}= \dfrac{1}{2} \times \dfrac{16}{15}=\dfrac{8}{15} \\ \therefore \tan A =\boxed{\dfrac{8}{15}}

Thus finally , a + b = 8 + 15 = 23 \Large a+b=8+15 = \boxed{23}

Omkar Kulkarni
Feb 21, 2015

Let the area of Δ A B C \Delta ABC be denoted by Δ \Delta .

Δ = a 2 ( b c ) 2 \therefore \Delta = a^{2}-(b-c)^{2}

Δ = a 2 b 2 c 2 + 2 b c \Delta = a^{2}-b^{2}-c^{2}+2bc

Δ = 2 b c 2 b c ( b 2 + c 2 a 2 2 b c ) \Delta=2bc-2bc\left(\frac{b^{2}+c^{2}-a^{2}}{2bc}\right)

1 2 b c sin A = 2 b c 2 b c cos A \frac{1}{2}bc\sin A = 2bc - 2bc\cos A

sin A 2 = 2 ( 1 cos A ) \frac{\sin A}{2}=2(1-\cos A)

sin A = 8 sin 2 A 2 \sin A=8\sin^{2}\frac{A}{2}

2 sin A 2 cos A 2 = 8 sin 2 A 2 2\sin\frac{A}{2}\cos{A}{2}=8\sin^{2}\frac{A}{2}

tan A 2 = 1 4 \tan\frac{A}{2}=\frac{1}{4}

tan A = 2 tan A 2 1 tan 2 A 2 = 1 2 1 1 16 = 1 2 × 16 15 = 8 15 \therefore \tan A = \frac{2\tan\frac{A}{2}}{1-\tan^{2}\frac{A}{2}}=\frac{\frac{1}{2}}{1-\frac{1}{16}}=\frac{1}{2}\times\frac{16}{15}=\boxed{\frac{8}{15}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...