If the area of a Δ A B C is equal to a 2 − ( b − c ) 2 then find the value of tan A .
a , b and c are sides opposite to angles A , B and C respectively.
Express your answer in the form of y x where x and y are coprime integers, and enter the value of x + y .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let the area of Δ A B C be denoted by Δ .
∴ Δ = a 2 − ( b − c ) 2
Δ = a 2 − b 2 − c 2 + 2 b c
Δ = 2 b c − 2 b c ( 2 b c b 2 + c 2 − a 2 )
2 1 b c sin A = 2 b c − 2 b c cos A
2 sin A = 2 ( 1 − cos A )
sin A = 8 sin 2 2 A
2 sin 2 A cos A 2 = 8 sin 2 2 A
tan 2 A = 4 1
∴ tan A = 1 − tan 2 2 A 2 tan 2 A = 1 − 1 6 1 2 1 = 2 1 × 1 5 1 6 = 1 5 8
Problem Loading...
Note Loading...
Set Loading...
Let the area of Δ A B C be denoted by Δ and its semiperimeter by s .
Δ = a 2 − ( b − c ) 2 ⇒ Δ = ( a + b − c ) ( a − b + c ) ⇒ Δ = ( a + b + c − 2 c ) ( a + b + c − 2 b ) ⇒ Δ = ( 2 s − 2 c ) ( 2 s − 2 b ) ⇒ Δ = 4 ( s − c ) ( s − b ) ⇒ Δ 2 = 1 6 ( s − c ) 2 ( s − b ) 2 ⇒ s ( s − a ) ( s − b ) ( s − c ) = 1 6 ( s − c ) 2 ( s − b ) 2 ⇒ s ( s − a ) = 1 6 ( s − b ) ( s − c ) ⇒ s ( s − a ) ( s − b ) ( s − c ) = 1 6 1 ⇒ tan 2 2 A = 1 6 1 ⇒ tan 2 A = 4 1 ∵ tan A = 1 − tan 2 2 A 2 tan 2 A ⇒ tan A = 1 − ( 4 1 ) 2 2 × 4 1 = 1 − 1 6 1 2 1 = 1 6 1 5 2 1 = 2 1 × 1 5 1 6 = 1 5 8 ∴ tan A = 1 5 8
Thus finally , a + b = 8 + 1 5 = 2 3