Trigonometry! #66

Geometry Level 3

Find the values of x x in ( π , π ) (-\pi,\pi) which satisfy the equation. 8 ( 1 + cos x + cos 2 x + cos 3 x + . . . ) = 64 8^{(1+\lvert\cos x\rvert+\cos^{2}x+\lvert\cos^{3}x\rvert+...)}=64

Express the four values of x x in the form of ± a π b ±\frac {a\pi}{b} and ± c π d ±\frac {c\pi}{d} such that a , b , c a,b,c and d d are integers and where g c d ( a , b ) = g c d ( c , d ) = 1 gcd(a,b)=gcd(c,d)=1 . Enter the value of a + b + c + d a+b+c+d .

This problem is part of the set Trigonometry .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Omkar Kulkarni
Feb 21, 2015

1 + cos x + cos 2 x + cos 3 x + \lvert1\rvert+\lvert\cos x\rvert+\lvert\cos^{2}x\rvert+\lvert\cos^{3}x\rvert+\cdots forms an infinite GP, which sums to 1 1 cos x \frac{1}{1-\lvert\cos x\rvert} . Hence we have 8 1 1 cos x = 8 2 1 1 cos x = 2 cos x = 1 2 cos x = ± 1 2 x = ± π 3 , ± 2 π 3 8^{\frac{1}{1-\lvert\cos x\rvert}}=8^{2} \\ \frac{1}{1-\lvert\cos x\rvert} = 2 \\ \lvert\cos x\rvert=\frac{1}{2} \\ \cos x = \pm\frac{1}{2} \\ \boxed{x=\pm\frac{\pi}{3},\pm\frac{2\pi}{3}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...