Trigonometry! #70

Geometry Level 4

If in a Δ A B C \Delta ABC , b + c 11 = c + a 12 = a + b 13 \frac {b+c}{11} = \frac {c+a}{12} = \frac {a+b}{13} then cos A x = cos B y = cos C z \frac {\cos A}{x} = \frac {\cos B}{y} = \frac {\cos C}{z} where x x , y y and z z are coprime positive integers. Enter the value of x + y + z x+y+z .

This problem is part of the set Trigonometry .


The answer is 51.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Omkar Kulkarni
Feb 24, 2015

b + c 11 = c + a 12 = a + b 13 \frac{b+c}{11}=\frac{c+a}{12}=\frac{a+b}{13}

( c + a ) ( b + c ) 12 11 = ( a + b ) ( c + a ) 13 12 = ( a + b ) ( b + c ) 13 11 \frac{(c+a)-(b+c)}{12-11}=\frac{(a+b)-(c+a)}{13-12}=\frac{(a+b)-(b+c)}{13-11}

a b = b c = a c 2 a-b=b-c=\frac{a-c}{2}

b + c 11 = b c 5 b = 6 c \therefore \frac{b+c}{11}=b-c\rightarrow5b=6c

a + c 12 = a c 2 5 a = 7 c \therefore\frac{a+c}{12}=\frac{a-c}{2}\rightarrow5a=7c

a + b 13 = a b 6 a = 7 b \therefore\frac{a+b}{13}=a-b\rightarrow6a=7b

a 7 = b 6 = c 5 = p \therefore \frac{a}{7}=\frac{b}{6}=\frac{c}{5}=p

a = 7 p , b = 6 p , c = 5 p \Rightarrow a=7p,~b=6p,~c=5p

cos A = b 2 + c 2 a 2 2 b c = 36 p 2 + 25 p 2 49 p 2 2 ( 6 p ) ( 5 p ) = 12 p 2 30 p 2 = 1 5 5 cos A = 1 \cos A=\frac{b^{2}+c^{2}-a^{2}}{2bc}=\frac{36p^{2}+25p^{2}-49p^{2}}{2(6p)(5p)}=\frac{12p^{2}}{30p^{2}}=\frac{1}{5} \\ \Rightarrow5\cos A=1

cos B = a 2 + c 2 b 2 2 a c = 49 p 2 + 25 p 2 36 p 2 2 ( 7 p ) ( 5 p ) = 38 p 2 70 p 2 = 19 35 35 cos B 19 = 1 \cos B=\frac{a^{2}+c^{2}-b^{2}}{2ac}=\frac{49p^{2}+25p^{2}-36p^{2}}{2(7p)(5p)}=\frac{38p^{2}}{70p^{2}}=\frac{19}{35} \\ \Rightarrow \frac{35\cos B}{19}=1

cos C = = a 2 + b 2 c 2 2 a b = 49 p 2 + 36 p 2 25 p 2 2 ( 7 p ) ( 6 p ) = 60 p 2 84 p 2 = 5 7 7 cos C 5 = 1 \cos C==\frac{a^{2}+b^{2}-c^{2}}{2ab}=\frac{49p^{2}+36p^{2}-25p^{2}}{2(7p)(6p)}=\frac{60p^{2}}{84p^{2}}=\frac{5}{7} \\ \Rightarrow\frac{7\cos C}{5}=1

5 cos A = 35 cos B 19 = 7 cos C 5 \therefore 5\cos A=\frac{35\cos B}{19}=\frac{7\cos C}{5}

cos A 7 = cos B 19 = cos C 25 \therefore\boxed{\frac{\cos A}{7}=\frac{\cos B}{19}=\frac{\cos C}{25}}

Lu Chee Ket
Feb 5, 2015

(b + c)/ 11 = (c + a)/ 12 = (a + b)/ 13 = k = (a - b)/ (12 - 11) = (a - c)/ (13 - 11)

13 (a - b) = a + b and 12 (a - c) = 2 (a + c)

a/ 7 = b/ 6 = c/ 5

Cos A = (36 + 25 - 49)/ (2)(6)(5) = 1/ 5

Cos B = (25 + 49 - 36)/ (2)(5)(7) = 19/ 35

Cos C =(49 + 36 - 25)/ (2)(7)(6) = 5/ 7

For ratios but not exact or absolute, same concept of coprime is applicable to describe 3 elements x, y and z wanted. Therefore,

Cos A/ 7 = Cos B/ 19 = Cos C/ 25 = 1/ 35 <> 1

Sum of integers = 7 + 19 + 25 = 51

Could you explain how you got to a 7 = b 6 = c 5 \frac{a}{7}=\frac{b}{6}=\frac{c}{5} ?

Omkar Kulkarni - 6 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...