Trigonometry! #75

Geometry Level 3

If 7 csc θ 3 cot θ = 7 7\csc\theta-3\cot\theta=7 then find the value of 7 cot θ 3 csc θ \lvert7\cot\theta-3\csc\theta\rvert

This problem is part of the set Trigonometry .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Jerome Polin
Feb 1, 2015

I dont know if somebody has a simplier solution.

7cscx - 3 cotx= 7 We square both side

49csc^2 x + 9cot^2 x - 42cscx.cotx = 49 49(cot^2x+1) + 9 cot^2 x - 42cscx.cotx=49 58cot^2x - 42 cscx.cotx= 0 58 cot^2x=42 cscx.cotx 58 cotx= 42 csc x 29 cotx= 21 csc x

Substitute to the equation 29/3 (cotx) - 3cotx= 7 (20/3) cot x= 7 Cotx= 21/20 Cscx= 29/20

So for 7cotx-3csc x= 7.21/20 - 3.29/20 = 60/20=3

please reply this method is correct or wrong

7cscx-3cotx=7 7/sinx-3cosx/sinx=7 (7-3cosx)/sinx=7 7-3cosx=7sinx 7(1-sinx)=3cosx 1-sinx=3/7cosx---------------------------eq 1 let 7cotx-3cscx=k thefore by same above method we get 7-3cosx=ksinx we know 1-sin^2x=cos^2 1+sinx)(1-sinx)=cos^2 1+sinx)3/7cosx=cos^2 now simplifing it we get 7-3cosx=3sinx thus k=3

TK Venkatesh - 6 years, 4 months ago

Log in to reply

Could you please use latex? It's hard to understand what you're trying to say.

Omkar Kulkarni - 6 years, 4 months ago
Marvin Chong
Feb 17, 2020

Look From Left To Right Look From Left To Right

Omkar Kulkarni
Feb 25, 2015

7 csc θ 3 cot θ = 7 7\csc\theta-3\cot\theta=7

Squaring both sides,

49 csc 2 θ 42 csc θ cot θ + 9 cot 2 θ = 49 49\csc^{2}\theta-42\csc\theta\cot\theta+9\cot^{2}\theta=49

49 ( 1 + cot 2 θ ) 42 csc θ cot θ + 9 ( csc 2 θ 1 ) = 49 49(1+\cot^{2}\theta)-42\csc\theta\cot\theta+9(\csc^{2}\theta-1)=49

49 + 49 cot 2 θ 42 csc θ cot θ + 9 csc 2 θ 9 = 49 49+49\cot^{2}\theta-42\csc\theta\cot\theta+9\csc^{2}\theta-9=49

49 cot 2 θ 42 csc θ cot θ + 9 csc 2 θ = 9 49\cot^{2}\theta-42\csc\theta\cot\theta+9\csc^{2}\theta=9

( 7 cot θ ) 2 2 ( 7 cot θ ) ( ( 3 csc θ ) + ( 3 csc θ ) 2 = 3 2 (7\cot\theta)^{2}-2(7\cot\theta)((3\csc\theta)+(3\csc\theta)^{2}=3^{2}

( 7 cot θ 3 csc θ ) 2 = 3 2 (7\cot\theta-3\csc\theta)^{2}=3^{2}

7 cot θ 3 csc θ = ± 3 7\cot\theta-3\csc\theta=\pm3

7 cot θ 3 csc θ = 3 \boxed{\lvert7\cot\theta-3\csc\theta\rvert=3}

Thanks. I updated the question to ask for the absolute value, which is 3.

Calvin Lin Staff - 6 years, 4 months ago

Log in to reply

OK. Thanks for your reply and your attention.

Luiz Ponce Alonso Ponce - 6 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...