Trigonometry! 77

Geometry Level 5

In Δ A B C \Delta ABC , A = 2 0 A=20^{\circ} , B = C = 8 0 B=C=80^{\circ} . D D lies on A C \overline{AC} such that m D B C = 7 0 m\angle DBC = 70^{\circ} . E E lies on A B \overline{AB} such that m E C B = 5 0 m\angle ECB = 50^{\circ} . Enter the measure of B D E \angle BDE in degrees, without the degree sign.

Bonus : Solve this problem by Ceva's theorem .


This problem is part of the set Trigonometry .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Nihar Mahajan
Sep 11, 2015

Using trigonometric version of Ceva's Theorem to Δ C D B \Delta CDB ,

sin ( D C E ) sin ( E C B ) × sin ( B D E ) sin ( E D C ) × sin ( C B E ) sin ( E B D ) sin ( 30 ) sin ( 50 ) × sin ( x ) sin ( x + 30 ) × sin ( 80 ) sin ( 10 ) = 1 sin ( 30 ) sin ( 50 ) × sin ( x ) sin ( x + 30 ) × 8 cos ( 40 ) cos ( 20 ) sin ( 10 ) cos ( 10 ) sin ( 10 ) = 1 sin ( 50 ) = cos ( 40 ) 8 sin ( 30 ) sin ( x ) cos ( 10 ) cos ( 20 ) = sin ( x + 30 ) 4 sin ( x ) cos ( 10 ) cos ( 20 ) = sin ( x + 30 ) 2 cos ( 20 ) [ s i n ( x + 10 ) + sin ( x 10 ) ] = sin ( x + 30 ) 2 cos ( 20 ) s i n ( x + 10 ) + 2 cos ( 20 ) s i n ( x 10 ) = sin ( x + 30 ) sin ( x + 30 ) + sin ( x 30 ) + sin ( x + 10 ) + sin ( x 30 ) = sin ( x + 30 ) sin ( x 30 ) + sin ( x + 10 ) = sin ( x 30 ) 2 sin ( x ) cos ( 10 ) = sin ( 30 x ) \dfrac{\sin(DCE)}{\sin(ECB)} \times\dfrac{\sin(BDE)}{\sin(EDC)} \times \dfrac{\sin(CBE)}{\sin(EBD)} \\ \Rightarrow \dfrac{\sin(30)}{\sin(50)} \times\dfrac{\sin(-x)}{\sin(x+30)} \times \dfrac{\sin(80)}{\sin(-10)} =1 \\ \Rightarrow \dfrac{\sin(30)}{\sin(50)} \times\dfrac{\sin(-x)}{\sin(x+30)} \times \dfrac{8\cos(40)\cos(20)\sin(10)\cos(10)}{\sin(-10)}=1 \\ \because \sin(50)=\cos(40) \Rightarrow 8\sin(30)\sin(x)\cos(10)\cos(20)=\sin(x+30) \\ \Rightarrow 4\sin(x)\cos(10)\cos(20)=\sin(x+30) \\ \Rightarrow 2\cos(20)[sin(x+10)+\sin(x-10)] =\sin(x+30) \\ \Rightarrow 2\cos(20)sin(x+10)+2\cos(20)sin(x-10) = \sin(x+30) \\ \Rightarrow \sin(x+30)+\sin(x-30)+\sin(x+10)+\sin(x-30)=\sin(x+30) \\ \Rightarrow \sin(x-30)+\sin(x+10)=-\sin(x-30) \\ \Rightarrow 2\sin(x)\cos(10)=\sin(30-x)

We know that 2 sin θ cos θ = s i n ( 2 θ ) 2\sin\theta\cos\theta = sin(2\theta) . Compare this equation with the above equation that we have got. To get a solution , θ = x = 10 \theta = x=10 and 2 θ = 30 x 2\theta=30-x . So by cross check , 30 x = 30 10 = 20 = 2 x 30-x=30-10=20 = 2x . Thus x = 10 \large\boxed{x=10} .

Armita Kazemi
Sep 15, 2015

Omkar Kulkarni
Feb 5, 2015

B E D = 17 0 x \angle BED = 170^{\circ} - x

In Δ B E D \Delta BED , by sine rule,

sin ( 17 0 x ) sin ( x ) = B D B E \frac{\sin (170^{\circ} - x)}{\sin(x)} = \frac{BD}{BE}

And in Δ B C D \Delta BCD , by sine rule

sin ( 8 0 ) sin ( 3 0 ) = B D B C \frac{\sin (80^{\circ})}{\sin(30^{\circ})} = \frac{BD}{BC}

Now, Δ B E C \Delta BEC is isosceles, and hence B E = B C BE=BC .

Hence we have the following equality.

sin ( 17 0 x ) sin ( x ) = sin ( 8 0 ) sin ( 3 0 ) \frac{\sin(170^{\circ}-x)}{\sin(x)}=\frac{\sin(80^{\circ})}{\sin(30^{\circ})}

sin ( x + 1 0 ) sin ( x ) = cos ( 1 0 ) 1 2 \frac{\sin(x+10^{\circ})}{\sin(x)}=\frac{\cos(10^{\circ})}{\frac{1}{2}}

sin ( x ) cos ( 1 0 ) + cos ( x ) sin ( 1 0 ) = 2 sin ( x ) cos ( 1 0 ) \sin(x)\cos(10^{\circ}) + \cos(x)\sin(10^{\circ}) = 2\sin(x)\cos(10^{\circ})

cos ( x ) sin ( 1 0 ) = sin ( x ) cos ( 1 0 ) \cos(x)\sin(10^{\circ}) = \sin(x) \cos(10^{\circ})

tan ( x ) = tan ( 1 0 ) \tan(x)=\tan(10^{\circ})

x = 1 0 \therefore \boxed{x=10^{\circ}}

Could someone try and prove this for me using Trigonometric Version of Ceva's Theorem?

Kudou Shinichi Here you go.

@Omkar Kulkarni I have given a try to crack this problem using trigonometric version of Ceva's theorem. Please check it out. Thanks! :)

Nihar Mahajan - 5 years, 9 months ago

It is given that angles B and C are equal!!! That is AB=AC. I do not understand how your solution is correct.

Niranjan Khanderia - 6 years, 3 months ago

Log in to reply

BEC is an isosceles triangle since E B C = 8 0 , B C E = 5 0 , C E B = 5 0 \angle EBC = 80 ^ \circ, \angle BCE = 50 ^ \circ, \angle CEB = 50 ^ \circ , and we thus have B C = B E BC = BE .

It is also true that A B C ABC is an isosceles triangle with A B = A C AB = AC .

Calvin Lin Staff - 6 years, 3 months ago

Thanks dude

Kudou Shinichi - 6 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...