Transformation

Geometry Level 2

Find the value of the expression: 1 4 sin 1 0 sin 7 0 2 sin 1 0 \large \dfrac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Relevant wiki: Euler's Formula

X = 1 4 sin 1 0 sin 7 0 2 sin 1 0 As sin θ = cos ( 9 0 θ ) = 1 4 cos 8 0 cos 2 0 2 cos 8 0 = 1 4 cos 4 π 9 cos π 9 2 cos 4 π 9 and cos ( π θ ) = cos θ = 1 + 4 cos 4 π 9 cos 8 π 9 2 cos 4 π 9 Let ω = e 2 π 9 i the 9th root of unity = 1 + 4 ( ω 2 + ω 2 2 ) ( ω 4 + ω 4 2 ) 2 ( ω 2 + ω 2 2 ) and by Euler’s formula. = 1 + ( ω 2 + ω 2 ) ( ω 4 + ω 4 ) ω 2 + ω 2 = 1 + ω 6 + ω 2 + ω 2 + ω 6 ω 2 + ω 2 Note that ω 6 + ω 6 2 = cos 2 π 3 = 1 2 = 1 1 + ω 2 + ω 2 ω 2 + ω 2 = 1 \begin{aligned} X & = \frac {1-4\sin 10^\circ \sin 70^\circ}{2\sin 10^\circ} & \small \color{#3D99F6} \text{As }\sin \theta = \cos (90^\circ - \theta) \\ & = \frac {1-4\cos 80^\circ \cos 20^\circ}{2\cos 80^\circ} \\ & = \frac {1{\color{#3D99F6}-}4\cos \frac {4\pi}9 \color{#3D99F6}\cos \frac \pi 9}{2\cos \frac {4\pi}9} & \small \color{#3D99F6} \text{and }\cos (\pi - \theta) = - \cos \theta \\ & = \frac {1{\color{#3D99F6}+}4\cos \frac {4\pi}9 \color{#3D99F6}\cos \frac {8\pi}9}{2\cos \frac {4\pi}9} & \small \color{#3D99F6} \text{Let }\omega = e^{\frac {2\pi}9i} \text{ the 9th root of unity} \\ & = \frac {1+4\left(\frac {\omega^2 + \omega^{-2}}2\right)\left(\frac {\omega^4 + \omega^{-4}}2\right)}{2\left(\frac {\omega^2 + \omega^{-2}}2\right)} & \small \color{#3D99F6} \text{and by Euler's formula.} \\ & = \frac {1+(\omega^2 + \omega^{-2})(\omega^4 + \omega^{-4})}{\omega^2 + \omega^{-2}} \\ & = \frac {1+ {\color{#3D99F6}\omega^6} + \omega^{-2} + \omega^2 + \color{#3D99F6} \omega^{-6}}{\omega^2 + \omega^{-2}} & \small \color{#3D99F6} \text{Note that }\frac {\omega^6 + \omega^{-6}}2 = \cos \frac {2\pi}3 = - \frac 12 \\ & = \frac {1{\color{#3D99F6}-1} + \omega^{-2} + \omega^2}{\omega^2 + \omega^{-2}} \\ & = \boxed 1 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...