Trigonometry! #82

Geometry Level 2

If m = cos α cos β m=\frac {\cos \alpha}{\cos \beta} and n = cos α sin β n = \frac{\cos \alpha}{\sin \beta} then select the option equivalent to ( m 2 + n 2 ) cos 2 β (m^{2}+n^{2})\cos ^{2} \beta

This problem is part of the set Trigonometry .

m 2 m^{2} m 2 2 \frac{m^{2}}{2} n 2 n^{2} n 2 2 \frac{n^{2}}{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

( m 2 + n 2 ) cos 2 β (m^2 + n^2) \cos ^2 \beta = ( ( cos α cos β ) 2 + ( cos α sin β ) 2 ) cos 2 β =\Bigg( \Big( \frac{\cos \alpha}{\cos \beta}\Big) ^2 + \Big( \frac{\cos \alpha}{\sin \beta}\Big) ^2 \Bigg) \cos ^2 \beta = ( cos 2 α sin 2 β + cos 2 α cos 2 β cos 2 β sin 2 β ) cos 2 β =\Bigg( \frac{\cos ^2 \alpha \sin^2 \beta + \cos ^2 \alpha \cos ^2 \beta}{\cos ^2 \beta \sin ^2 \beta} \Bigg) \cos ^2 \beta = cos 2 α ( sin 2 β + cos 2 β ) sin 2 β =\frac{\cos ^2 \alpha \Big( \sin ^2 \beta + \cos ^2 \beta \Big)}{\sin ^2 \beta} = ( cos A sin β ) 2 =\Bigg( \frac{\cos A}{\sin \beta} \Bigg) ^2 = n 2 =n^2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...