Simplify the following expression to a numerical value.
This problem is part of the set Trigonometry .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
By All Silver Tea Cup rule , we have the following relations:
sin ( 2 3 π − α ) = cos α , sin ( 3 π + α ) = sin α , sin ( 2 π + α ) = cos α , sin ( 5 π + α ) = sin α
Thus , by substituting the above things in give expression we get:
3 cos 4 α + 3 sin 4 α − 2 c o s 6 α − 2 sin 6 α = 3 sin 4 α − 2 sin 6 α + 3 cos 4 α − 2 c o s 6 α = sin 4 α ( 3 − 2 sin 2 α ) + cos 4 α ( 3 − 2 cos 2 α ) = sin 4 α ( 1 + 2 cos 2 α ) + cos 4 α ( 1 + sin 2 α ) = sin 4 α + cos 4 α + 2 sin 4 α sin 2 α + 2 cos 4 α cos 2 α = sin 4 α + cos 4 α + 2 sin 2 α cos 2 α ( cos 2 α + sin 2 α ) = sin 4 α + cos 4 α + 2 sin 2 α cos 2 α = ( cos 2 α + sin 2 α ) 2 = 1 2 = 1