Trigonometry! #84

Geometry Level 3

Simplify the following expression to a numerical value. 3 ( sin 4 ( 3 π 2 α ) + sin 4 ( 3 π + α ) ) 2 ( sin 6 ( π 2 + α ) + sin 6 ( 5 π α ) ) 3\left(\sin^{4} \left(\frac{3\pi}{2} - \alpha \right) + \sin^{4}(3\pi+\alpha)\right) - 2 \left(\sin^{6} \left(\frac{\pi}{2} + \alpha \right) + \sin^{6}(5\pi-\alpha)\right)

This problem is part of the set Trigonometry .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Nihar Mahajan
Sep 11, 2015

By All Silver Tea Cup rule , we have the following relations:

sin ( 3 π 2 α ) = cos α , sin ( 3 π + α ) = sin α , sin ( π 2 + α ) = cos α , sin ( 5 π + α ) = sin α \sin\left(\dfrac{3\pi}{2}-\alpha\right) = \cos\alpha \ , \ \sin(3\pi + \alpha) = \sin\alpha \ , \ \sin\left(\dfrac{\pi}{2}+\alpha\right) = \cos\alpha \ , \ \sin(5\pi + \alpha) = \sin\alpha

Thus , by substituting the above things in give expression we get:

3 cos 4 α + 3 sin 4 α 2 c o s 6 α 2 sin 6 α = 3 sin 4 α 2 sin 6 α + 3 cos 4 α 2 c o s 6 α = sin 4 α ( 3 2 sin 2 α ) + cos 4 α ( 3 2 cos 2 α ) = sin 4 α ( 1 + 2 cos 2 α ) + cos 4 α ( 1 + sin 2 α ) = sin 4 α + cos 4 α + 2 sin 4 α sin 2 α + 2 cos 4 α cos 2 α = sin 4 α + cos 4 α + 2 sin 2 α cos 2 α ( cos 2 α + sin 2 α ) = sin 4 α + cos 4 α + 2 sin 2 α cos 2 α = ( cos 2 α + sin 2 α ) 2 = 1 2 = 1 3\cos^4\alpha + 3\sin^4\alpha-2cos^6\alpha-2\sin^6\alpha \\ = 3\sin^4\alpha-2\sin^6\alpha+3\cos^4\alpha-2cos^6\alpha \\ = \sin^4\alpha(3-2\sin^2\alpha) + \cos^4\alpha(3-2\cos^2\alpha) \\ = \sin^4\alpha(1+2\cos^2\alpha) + \cos^4\alpha(1+\sin^2\alpha) \\ = \sin^4\alpha + \cos^4\alpha + 2\sin^4\alpha\sin^2\alpha+2\cos^4\alpha\cos^2\alpha \\ = \sin^4\alpha + \cos^4\alpha + 2\sin^2\alpha\cos^2\alpha(\cos^2\alpha + \sin^2\alpha) \\ = \sin^4\alpha + \cos^4\alpha + 2\sin^2\alpha\cos^2\alpha \\ = (\cos^2\alpha + \sin^2\alpha)^2 \\ = 1^2 \\ = \Large\boxed{1}

Deepak Kumar
Sep 11, 2015

Simply put alpha 0 as the expression is always defined .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...