Trigonometry! #89

Geometry Level 3

If a cos θ b sin θ = c a\cos\theta-b\sin\theta=c then a sin θ + b cos θ a\sin\theta+b\cos\theta is equal to

This problem is part of the set Trigonometry .

None of these ± a 2 + b 2 + c 2 ±\sqrt{a^{2} + b^{2} + c^{2}} ± a 2 + b 2 c 2 ±\sqrt{a^{2} + b^{2} - c^{2}} ± c 2 a 2 b 2 ±\sqrt{c^{2}-a^{2}-b^{2}}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let a = A cos ( α ) a = A\cos(\alpha) and b = A sin ( α ) b = A\sin(\alpha) for some real A , α . A,\alpha. Then

c = a cos ( θ ) b sin ( θ ) = A ( cos ( α ) cos ( θ ) sin ( α ) sin ( θ ) ) = A cos ( α + θ ) . c = a\cos(\theta) - b\sin(\theta) = A(\cos(\alpha)\cos(\theta) - \sin(\alpha)\sin(\theta)) = A\cos(\alpha + \theta).

We also then have that

a sin ( θ ) + b cos ( θ ) = A ( cos ( α ) sin ( θ ) + sin ( α ) cos ( θ ) ) = a\sin(\theta) + b\cos(\theta) = A(\cos(\alpha)\sin(\theta) + \sin(\alpha)\cos(\theta)) =

A sin ( α + θ ) = ± A 1 cos 2 ( α + θ ) ) = ± A 1 ( c A ) 2 = A\sin(\alpha + \theta) = \pm A\sqrt{1 - \cos^{2}(\alpha + \theta))} = \pm A\sqrt{1 - (\frac{c}{A})^{2}} =

± A 2 c 2 = ± a 2 + b 2 c 2 \pm \sqrt{A^{2} - c^{2}} = \boxed{\pm \sqrt{a^{2} + b^{2} - c^{2}}} ,

since a 2 + b 2 = A 2 ( sin 2 ( α ) + cos 2 ( α ) ) = A 2 a^{2} + b^{2} = A^{2}(\sin^{2}(\alpha) + \cos^{2}(\alpha)) = A^{2} .

Incredible Mind
Feb 5, 2015

simple..

expn 1 is sqrt(a^2+b^2) cos( theta + arctan b/a ) = c

expn 2 is sqrt(a^2+b^2) sin( theta + arctan b/a ) = c

now just use sin^2 x+ cos^2 x = 1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...