Trigonometry! #92

Geometry Level 2

Select the correct simplification of sec θ 1 sec θ + 1 + sec θ + 1 sec θ 1 \sqrt{\frac{\sec \theta - 1}{\sec \theta + 1}} + \sqrt{\frac{\sec \theta + 1}{\sec \theta - 1}}

This problem is part of the set Trigonometry .

2 csc θ 2\csc\theta 2 sec θ 2\sec\theta 2 sin θ sec θ \frac{2\sin\theta}{\sqrt{\sec\theta}} 2 cos θ 2\cos\theta

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Radhesh Sarma
Feb 7, 2015

For making your task easier, you could've made t a n θ tan \ \theta in both denominators.

Kunal Verma - 5 years, 11 months ago
Munem Shahriar
Apr 18, 2018

sec θ 1 sec θ + 1 + sec θ + 1 sec θ 1 = ( sec θ 1 ) ( sec θ 1 ) ( sec θ + 1 ) ( sec θ 1 ) + ( sec θ + 1 ) ( sec θ + 1 ) ( sec θ 1 ) ( sec θ + 1 ) = ( sec θ 1 ) 2 sec 2 θ 1 + ( sec θ + 1 ) 2 sec 2 θ 1 = sec θ 1 tan 2 θ + sec θ + 1 tan 2 θ [ sec 2 θ 1 = tan 2 θ ] = sec θ 1 tan θ + sec θ + 1 tan θ = 2 sec θ tan θ = 2 cos θ × cos θ sin θ = 2 sin θ = 2 1 csc θ = 2 csc θ \large \begin{aligned} \sqrt{\frac{\sec \theta - 1}{\sec \theta + 1}} + \sqrt{\frac{\sec \theta + 1}{\sec \theta - 1}} & = \sqrt{\frac{(\sec \theta - 1)(\sec \theta - 1)}{(\sec \theta + 1)(\sec \theta - 1)}} + \sqrt{\frac{(\sec \theta +1)(\sec \theta + 1)}{(\sec \theta - 1)(\sec \theta + 1)}} \\ & = \frac{\sqrt{(\sec \theta -1)^2}}{\sqrt{\sec^2 \theta - 1}} + \frac{\sqrt{(\sec \theta + 1)^2}}{\sqrt{\sec^2 \theta - 1}} \\ & = \frac{\sec \theta - 1}{\sqrt{\tan^2 \theta}} + \frac{\sec \theta + 1}{\sqrt{\tan^2 \theta}} ~~~~~~~~~ [\sec^2 \theta - 1 = \tan^2 \theta]\\ & = \frac{\sec \theta - 1}{ \tan \theta} + \frac{\sec \theta + 1}{\tan \theta} \\ & = \frac{2\sec \theta}{\tan \theta} \\ & = \frac 2{\cos \theta} \times \frac{\cos \theta}{\sin \theta} \\ & = \frac 2{\sin \theta} \\ & = \frac 2{\frac 1{\csc \theta}} \\ & = 2 \csc \theta \\ \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...