Trigonometry! #99

Geometry Level 2

For all 0 < θ < 9 0 , 0 < \theta < 90^\circ,

sec 2 θ + csc 2 θ = ? \sqrt{\sec^{2}\theta+\csc^{2}\theta}=\, ?

tan θ + cot θ \tan\theta+\cot\theta sec 2 θ csc 2 θ \frac{\sec^{2}\theta}{\csc^{2}\theta} sec θ tan θ \sec\theta-\tan\theta sec θ + csc θ \sec\theta+\csc\theta

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Omkar Kulkarni
Feb 12, 2015

sec 2 θ + csc 2 θ \sqrt{\sec^{2}\theta+\csc^{2}\theta}

= ( 1 + tan 2 θ ) + ( 1 + cot 2 θ ) =\sqrt{(1+\tan^{2}\theta)+(1+\cot^{2}\theta)}

= tan 2 θ + 2 + cot 2 θ =\sqrt{\tan^{2}\theta+2+\cot^{2}\theta}

= tan 2 θ + 2 tan θ cot θ + cot 2 θ =\sqrt{\tan^{2}\theta+2\tan\theta\cot\theta+\cot^{2}\theta}

= ( tan θ + cot θ ) 2 =\sqrt{(\tan\theta+\cot\theta)^{2}}

tan θ + cot θ \boxed{\tan\theta+\cot\theta}

How 2 became 2tan cot

Pragati Mishra - 4 years ago

Log in to reply

If you convert tan^2 and cot^2 to sin^2/cos^2 and cos^2/sin^2 you can multiply (sin^2/cos^2)(sin^2/sin^2), (cos^2/sin^2)(cos^2/cos^2) and then 2(cos^2)(sin^2)/cos^2sin^2 and you get = (sin^4+2sin^2cos^2+cos^4)/sin^2cos^2. if you use algebra (x^4+2xy+y^4)= (x^2+y^2)(x^2+y^2) or sin^4...= (sin^2+cos^2)(sin^2+cos^2)/sin^2cos^2 and using trig identities we know that (sin^2+cos^2)=1, so your new answer is 1/sin^2cos^2. sqrt 1/sin^2cos^2= 1/sincos. then we turn the 1 back into sin^2+cos^2 and we get (sin^2/sincos)+(cos^2/sincos) or sin/cos+cos/sin which again converts to tan+cot.

Nicholas Fiacco - 3 years, 3 months ago

2 = 2(1)

tan(x)cot(x) = 1

2 = 2tan(x)cot(x)

Dominik Zmelik - 2 years, 5 months ago

Cot(x). Tan(x) = 1

Muhammad Hatta Hakim - 2 years, 5 months ago
Sandeep Rathod
Feb 9, 2015

1 cos 2 x + 1 sin 2 x \sqrt{ \dfrac{1}{\cos^2 x} + \dfrac{1}{\sin^2 x}}

cos 2 x + sin 2 x sin 2 x × cos 2 x \sqrt{ \dfrac{ \cos^2 x + \sin^2 x}{\sin^2 x \times \cos^2 x}}

1 sin x cos x \dfrac{1}{\sin x \cos x}

cos 2 x + sin 2 x sin x cos x \dfrac{ \cos^2 x + \sin^2 x}{\sin x \cos x}

= tan x + cot x = \tan x + \cot x

Okay, thanks!

Omkar Kulkarni - 6 years, 4 months ago

you confuse me

Shiv Mehta - 1 year, 5 months ago

nevermind i understood

Shiv Mehta - 1 year, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...