Trigonometry and Algebra Crossover

Geometry Level 5

Consider the system of equations

x y = x y + 2 y z = y z + 2 z x = z x + 2. \begin{aligned} \frac{x}{y} &= xy + 2 \\ \frac{y}{z} &= yz + 2 \\ \frac{z}{x} &= zx + 2 . \end{aligned}

Let ( x , y , z ) (x, y, z) be the solution to this system with the minimum value of x x . Then, x + y + z = a x + y + z = - \sqrt{a} for some positive integer a a . Find the value of a a .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Steven Yuan
Mar 6, 2015

First, rewrite the system as

x = x y 2 + 2 y y = y z 2 + 2 z z = z x 2 + 2 x . \begin{aligned} x &= xy^2 + 2y \\ y &= yz^2 + 2z \\ z &= zx^2 + 2x. \end{aligned}

If we solve for x x in the first equation, y y in the second, and z z in the third, we get

x = 2 y 1 y 2 y = 2 z 1 z 2 z = 2 x 1 x 2 . \begin{aligned} x &= \frac{2y}{1 - y^2} \\ y &= \frac{2z}{1 - z^2} \\ z &= \frac{2x}{1 - x^2}. \end{aligned}

Note that tan 2 a = 2 tan a 1 tan 2 a \tan 2a = \frac{2 \tan a}{1 - \tan ^2 a} . Thus, if we let x = tan a x = \tan a , then z = tan 2 a z = \tan 2a (third equation), y = tan 4 a y = \tan 4a (second equation), and x = tan 8 a x = \tan 8a (first equation).

Since x = tan a x = \tan a and x = tan 8 a x = \tan 8a , tan a = tan 8 a \tan a = \tan 8a . Since tan ( b + k π ) = tan b \tan (b + k\pi) = \tan b , for all integers k k , we have

tan ( a + k π ) = tan 8 a a + k π = 8 a 7 a = k π a = k π 7 . \begin{aligned} \tan (a + k \pi) &= \tan 8a \\ a + k \pi &= 8a \\ 7a &= k \pi \\ a &= \frac{k \pi}{7} . \end{aligned}

Therefore, x = tan k π 7 x = \tan \frac{k \pi}{7} , for integers 1 k 6 1 \leq k \leq 6 . (Anything above or below this constraint gives repeated values.)The smallest value of x x occurs at k = 4 k = 4 , so our solution is

( x , y , z ) = ( tan 4 π 7 , tan 8 π 7 , tan 16 π 7 ) = ( tan 4 π 7 , tan π 7 , tan 2 π 7 ) . (x, y, z) = \left ( \tan \frac{4\pi}{7}, \tan \frac{8\pi}{7}, \tan \frac{16\pi}{7} \right ) = \left ( \tan \frac{4\pi}{7}, \tan \frac{\pi}{7}, \tan \frac{2 \pi}{7} \right ).

Thus, x + y + z = tan π 7 + tan 2 π 7 + tan 4 π 7 = 7 x + y + z = \tan \frac{\pi}{7} + \tan \frac{2 \pi}{7} + \tan \frac{4 \pi}{7} = - \sqrt{7} , and a = 7 a = \boxed{7} . (I will post a proof of the final step later; it involves DeMoivre's Theorem.)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...