Trigonometry and integer numbers

Geometry Level 4

Find the smallest positive integer x x (measured in degrees) such that tan ( x 16 0 ) = cos 5 0 1 sin 5 0 \tan(x-160^{\circ})=\dfrac{\cos50^{\circ}}{1-\sin50^{\circ}}


This is a part of the Set .


The answer is 50.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Note that in general tan ( θ 2 ) = 1 cos ( θ ) sin ( θ ) . \tan\left(\dfrac{\theta}{2}\right) = \dfrac{1 - \cos(\theta)}{\sin(\theta)}.

Then cos ( 5 0 ) 1 sin ( 5 0 ) = sin ( 4 0 ) 1 cos ( 4 0 ) = 1 tan ( 2 0 ) = tan ( 7 0 ) . \dfrac{\cos(50^{\circ})}{1 - \sin(50^{\circ})} = \dfrac{\sin(40^{\circ})}{1 - \cos(40^{\circ})} = \dfrac{1}{\tan(20^{\circ})} = \tan(70^{\circ}).

So we now require that

tan ( x 16 0 ) = tan ( 7 0 ) x 16 0 = 7 0 + n 18 0 \tan(x - 160^{\circ}) = \tan(70^{\circ}) \Longrightarrow x - 160^{\circ} = 70^{\circ} + n*180^{\circ}

x = 23 0 + n 18 0 . \Longrightarrow x = 230^{\circ} + n*180^{\circ}.

The smallest positive value for x x then occurs when n = 1 n = -1 and x = 5 0 . x = \boxed{50^{\circ}}.

Naman Gupta
Aug 28, 2015

tan(x-160)=cos50/(1-sin50)

=tan(x-160+360)=cos50/(1-sin50)

=tan(20+x)=cos50/(1-sin50)

=sin(20+x)/cos(20+x)=cos50/(1-sin50)

=sin(20+x)-sin(20+x)sin(50)=cos(50)cos(20+x)

=sin(20+x)=cos(50)cos(20+x)+sin(50)sin(20+x)

Using the identity cos(A-B)=cosAcosB+sinAsinB

=sin(20+x)=cos(20+x-50)

=sin(20+x)=cos(x-30)

=sin(20+x)=sin(90-x+30)

Hence

20+x=120-x

=2x=100

=x=50

Chang Jia Geng
Dec 26, 2015

First, construct this diagram:

From triangle ABC, we have cos 5 0 = b c , sin 5 0 = a c \cos 50^\circ = \frac{b}{c}, \sin 50^\circ = \frac{a}{c}

Hence the RHS expression becomes b c 1 a c = b c a = t a n A E C \frac{\frac{b}{c}}{1-\frac{a}{c}}=\frac{b}{c-a} = tan\angle AEC

Since triangle CDE is isosceles, A E C = D E C = 18 0 4 0 2 = 7 0 \angle AEC = \angle DEC = \frac{180^\circ - 40^\circ}{2} = 70^\circ

Hence tan ( x 16 0 ) = t a n ( 7 0 ) \tan(x-160^\circ) = tan(70^\circ)

Since t a n ( 7 0 ) = t a n ( 11 0 ) tan(70^\circ) = tan(-110^\circ) , smallest integer x = 11 0 + 16 0 = 5 0 x = -110^\circ+160^\circ=\boxed {50^\circ}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...