Trigonometry and Limits:

Calculus Level 5

If α \alpha , β \beta , γ \gamma be three distinct real values such that s i n α + s i n β + s i n γ s i n ( α + β + γ ) = 2 \frac{sin\alpha +sin\beta+ sin\gamma}{sin \left(\alpha+\beta+\gamma\right)} =2 , and c o s α + c o s β + c o s γ c o s ( α + β + γ ) = 2 \frac{cos\alpha +cos\beta+ cos\gamma}{cos \left(\alpha+\beta+\gamma\right)}=2 and cos( α + β \alpha+\beta ) + cos ( β + γ \beta+\gamma )+cos ( γ + α \gamma+\alpha ) =a \text{=a } , then find the value of the lim x a x 2 a 2 x a + x a \lim_{x\to a} \frac{\sqrt{x^{2}-a^{2}}}{\sqrt{x-a}+\sqrt{x}-\sqrt{a}}

Note: If you solve the problem, give your real- analysis proof.

Inspiration: IIT-JEE


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Patrick Corn
Oct 2, 2019

First let's solve the limit: by L'Hopital , lim x a x 2 a 2 x a + x a = lim x a x x 2 a 2 1 2 x a + 1 2 x = lim x a x x + a 2 + x 2 a 2 2 x = a 2 a 2 + 0 = 2 a . \begin{aligned} \lim_{x\to a} \frac{\sqrt{x^2-a^2}}{\sqrt{x-a} + \sqrt{x} - \sqrt{a}} &= \lim_{x\to a} \frac{\frac{x}{\sqrt{x^2-a^2}}}{\frac1{2\sqrt{x-a}} + \frac1{2\sqrt{x}}} \\ &= \lim_{x\to a} \frac{x}{\frac{\sqrt{x+a}}2 + \frac{\sqrt{x^2-a^2}}{2\sqrt{x}}} \\ &= \frac{a}{\frac{\sqrt{2a}}2 + 0} = \sqrt{2a}. \end{aligned}

Now let z 1 = e i α , z 2 = e i β , z 3 = e i γ . z_1 = e^{i\alpha}, z_2 = e^{i\beta}, z_3 = e^{i\gamma}. Then the two equations taken together give z 1 + z 2 + z 3 = 2 z 1 z 2 z 3 z 1 + z 2 + z 3 = 2 z 1 z 2 z 3 \begin{aligned} z_1 + z_2 + z_3 &= 2z_1z_2z_3 \\ {\overline{z_1}} + {\overline{z_2}} + {\overline{z_3}} &= 2{\overline{z_1z_2z_3}} \end{aligned} and multiplying the second equation by z 1 z 2 z 3 z_1z_2z_3 gives z 2 z 3 + z 1 z 3 + z 1 z 2 = 2 z_2z_3 + z_1z_3 + z_1z_2 = 2 but the left side of this equation is just cos ( α + β ) + cos ( γ + α ) + cos ( β + γ ) , \cos(\alpha+\beta) + \cos(\gamma+\alpha) + \cos(\beta+\gamma), so a = 2 , a=2, and the answer is 2 a = 2 . \sqrt{2a} = \fbox{2}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...