Trigonometry Is Complicated Yet Beautiful

Geometry Level 2

If sec x + tan x = 22 7 \sec x + \tan x = \dfrac{22}{7} and csc x + cot x = m n \csc x + \cot x = \dfrac{m}{n} , where m m and n n are coprime positive integers , find m + n m+n .


The answer is 44.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Michael Mendrin
Jul 30, 2016

Relevant wiki: Proving Trigonometric Identities - Intermediate

Use the trigonometric identity

sec ( x ) + tan ( x ) + 1 sec ( x ) + tan ( x ) 1 = csc ( x ) + cot ( x ) \dfrac { \sec\left( x \right) +\tan\left( x \right) +1 }{ \sec\left( x \right) +\tan\left( x \right) -1 } =\csc\left( x \right) +\cot\left( x \right)

to compute the value, given 22 7 \dfrac{22}{7}

22 7 + 1 22 7 1 = 29 15 \dfrac { \dfrac { 22 }{ 7 } +1 }{ \dfrac { 22 }{ 7 } -1 } =\dfrac { 29 }{ 15 }

Edit: Per request

sec ( x ) + tan ( x ) = 1 + sin ( x ) cos ( x ) \sec\left( x \right) +\tan\left( x \right) =\dfrac { 1+\sin\left( x \right) }{\cos\left( x \right) }

csc ( x ) + cot ( x ) = 1 + cos ( x ) sin ( x ) \csc\left( x \right) +\cot\left( x \right) =\dfrac { 1+\cos\left( x \right) }{\sin\left( x \right) }

Substituting and rearranging, we have

( 1 + sin ( x ) + cos ( x ) ) ( sin ( x ) ) ( 1 + sin ( x ) cos ( x ) ) ( 1 + cos ( x ) ) = ( sin ( x ) ) 2 + ( cos ( x ) ) 2 1 = 0 (1+\sin\left( x \right) +\cos\left( x \right) )\left( \sin\left( x \right) \right) -(1+\sin\left( x \right) -\cos\left( x \right) )(1+\cos\left( x \right) )={ \left(\sin\left( x \right) \right) }^{ 2 }+{ \left(\cos\left( x \right) \right) }^{ 2 }-1=0

and so the identity is proven

Sir I am new to this identity. Can you please derive it from the scratch and update your answer..

Puneet Pinku - 4 years, 10 months ago

Relevant wiki: Half Angle Tangent Substitution

sec x + tan x = 22 7 By half angle tangent substitution 1 + t 2 1 t 2 + 2 t 1 t 2 = 22 7 and let t = tan x 2 ( 1 + t ) 2 ( 1 t ) ( 1 + t ) = 22 7 1 + t 1 t = 22 7 7 + 7 t = 22 22 t t = 15 29 \begin{aligned} \sec x + \tan x & = \frac {22}7 & \small \color{#3D99F6} \text{By half angle tangent substitution} \\ \frac {1+t^2}{1-t^2} + \frac {2t}{1-t^2} & = \frac {22}7 & \small \color{#3D99F6} \text{and let }t = \tan \frac x2 \\ \frac {(1+t)^2}{(1-t)(1+t)} & = \frac {22}7 \\ \frac {1+t}{1-t} & = \frac {22}7 \\ 7 + 7t & = 22-22t \\ \implies t & = \frac {15}{29} \end{aligned}

Now, we have:

csc x + cot x = 1 + t 2 2 t + 1 t 2 2 t = 2 2 t = 1 t = 29 15 \begin{aligned} \csc x + \cot x & = \frac {1+t^2}{2t} + \frac {1-t^2}{2t} \\ & = \frac 2{2t} = \frac 1t = \frac {29}{15} \end{aligned}

m + n = 29 + 15 = 44 \implies m+n = 29+15 = \boxed{44}

Chung Kevin
Aug 6, 2016

We want to find the value of

csc x + cot x = 1 sin x + cos x sin x = 1 + cos x sin x = 1 + ( 2 cos 2 x 2 1 ) 2 sin x 2 cos x 2 = cot x 2 \csc x + \cot x = \dfrac1{\sin x} + \dfrac{\cos x}{\sin x} = \dfrac{1+ \cos x}{\sin x} = \dfrac{1 + (2\cos^2 \frac x2 - 1) }{2\sin\frac x2 \cos \frac x2} = \cot \frac x2

We are given that sec x + tan x = 1 + sin x cos x = 22 7 \sec x + \tan x = \dfrac{1+\sin x}{\cos x} = \dfrac{22}7 , we apply the half angle tangent substitution . That is, let t = tan x 2 t = \tan \dfrac x2 , then sin x = 2 t 1 + t 2 \sin x = \dfrac{2t}{1+t^2} and cos x = 1 t 2 1 + t 2 \cos x = \dfrac{1-t^2}{1+t^2} , we have

1 + sin x cos x = 22 7 ( 1 + 2 t 1 + t 2 ) ÷ ( 1 t 2 1 + t 2 ) = 22 7 1 + t 2 + 2 t 1 t 2 = 22 7 7 ( 1 + t 2 + 2 t ) = 22 ( 1 t 2 ) 7 + 7 t 2 + 14 t = 22 22 t 2 29 t 2 + 14 t 15 = 0 ( t + 1 ) ( 29 t 15 ) = = 0 t = 1 , 15 29 \begin{aligned} \dfrac{1+\sin x}{\cos x} &=& \dfrac{22}7 \\ \left( 1 + \dfrac{2t}{1+t^2} \right) \div \left ( \dfrac{1-t^2}{1+t^2} \right) &=&\dfrac{22}7 \\ \dfrac{1+t^2+2t}{1-t^2} &=&\dfrac{22}7 \\ 7(1+t^2 + 2t) &=& 22(1-t^2) \\ 7 + 7t^2 + 14t&=& 22 - 22t^2 \\ 29t^2 + 14t - 15 &=& 0 \\ (t + 1)(29t -15) &=& = 0 \\ t &=& -1, \dfrac{15}{29} \end{aligned}

By inspection, we see that t = 1 t = -1 is an extraneous root (as division by 0 is not allowed), thus it is not a solution. So tan x 2 = t = 15 29 \tan \dfrac x2 = t = \dfrac{15}{29} only.

Hence, the value that we're looking for is cot x 2 = ( tan x 2 ) 1 = 29 15 \cot \dfrac x2 = \left( \tan \dfrac x2\right)^{-1} = \dfrac{29}{15} . And the answer is 29 + 15 = 44 29 + 15 = \boxed{44} .

Beautiful solution!!

Puneet Pinku - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...