Trigonometry Challenge 1

Geometry Level 3

csc π 18 3 sec π 18 = ? \csc {\frac{\pi}{18}}-\sqrt{3}\sec {\frac{\pi}{18}}=\boxed{?}

Clarifications:

  1. csc ( ) \csc(\cdot) denotes the cosecant function.
  2. All angles are in radians.


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Noel Lo
Jul 18, 2017

csc π 18 3 sec π 18 = 1 sin π 18 3 cos π 18 = cos π 18 3 sin π 18 sin π 18 cos π 18 = 2 ( 1 2 cos π 18 3 2 sin π 18 ) sin π 18 cos π 18 = 2 ( sin π 6 cos π 18 cos π 6 sin π 18 ) sin π 18 cos π 18 \csc {\frac{\pi}{18}}-\sqrt{3}\sec {\frac{\pi}{18}}=\frac{1}{\sin {\frac{\pi}{18}}}-\frac{\sqrt{3}}{\cos {\frac{\pi}{18}}}=\frac{\cos {\frac{\pi}{18}}-\sqrt{3}\sin {\frac{\pi}{18}}}{\sin {\frac{\pi}{18}}\cos {\frac{\pi}{18}}}=\frac{2(\frac{1}{2}\cos {\frac{\pi}{18}}-\frac{\sqrt{3}}{2}\sin {\frac{\pi}{18}})}{\sin {\frac{\pi}{18}}\cos {\frac{\pi}{18}}}= \frac{2(\sin{\frac{\pi}{6}}\cos {\frac{\pi}{18}}-\cos{\frac{\pi}{6}}\sin {\frac{\pi}{18}})}{\sin {\frac{\pi}{18}}\cos {\frac{\pi}{18}}}

= 2 sin ( π 6 π 18 ) sin π 18 cos π 18 = 2 sin π 9 sin π 18 cos π 18 = 2 ( 2 sin π 9 ) 2 sin π 18 cos π 18 = ( 2 × 2 ) sin π 9 sin ( 2 × π 18 ) = 4 sin π 9 sin π 9 = 4 =\frac{2\sin{(\frac{\pi}{6}-\frac{\pi}{18}})}{\sin {\frac{\pi}{18}}\cos {\frac{\pi}{18}}}=\frac{2\sin{\frac{\pi}{9}}}{\sin {\frac{\pi}{18}}\cos {\frac{\pi}{18}}}=\frac{2(2\sin{\frac{\pi}{9}})}{2\sin {\frac{\pi}{18}}\cos {\frac{\pi}{18}}}=\frac{(2 \times 2)\sin{\frac{\pi}{9}}}{\sin {(2\times \frac{\pi}{18})}}=\frac{4\sin{\frac{\pi}{9}}}{\sin {\frac{\pi}{9}}}=\boxed{4}

Chew-Seong Cheong
Jul 28, 2017

csc π 18 3 sec π 18 = 1 sin π 18 3 cos π 18 = cos π 18 3 sin π 18 sin π 18 cos π 18 = 2 ( 1 2 cos π 18 3 2 sin π 18 ) 1 2 sin π 9 = 4 sin ( π 6 π 18 ) sin π 9 = 4 sin π 9 sin π 9 = 4 \begin{aligned} \csc \frac \pi{18} - \sqrt 3 \sec \frac \pi{18} & = \frac 1{\sin \frac \pi{18}} - \frac {\sqrt 3}{\cos \frac \pi{18}} \\ & = \frac {\cos \frac \pi{18} - \sqrt 3 \sin \frac \pi{18}}{\sin \frac \pi{18}\cos \frac \pi{18}} \\ & = \frac {2\left(\frac 12 \cos \frac \pi{18} - \frac {\sqrt 3}2 \sin \frac \pi{18}\right)}{\frac 12 \sin \frac \pi 9} \\ & = \frac {4 \sin \left(\frac \pi 6 - \frac \pi{18}\right)}{\sin \frac \pi 9} \\ & = \frac {4 \sin \frac \pi 9}{\sin \frac \pi 9} \\ & = \boxed{4} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...