sec 9 4 π + sec 9 2 π − sec 9 π = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
X = sec 9 4 π + sec 9 2 π − sec 9 π = cos 9 4 π 1 + cos 9 2 π 1 − cos 9 π 1 = cos 9 4 π cos 9 2 π cos 9 π cos 9 2 π cos 9 π + cos 9 4 π cos 9 π − cos 9 4 π cos 9 2 π = 2 cos 9 π cos 9 2 π cos 9 4 π cos 9 π + cos 3 π + cos 3 π + cos 9 5 π − cos 9 2 π − cos 3 2 π = 2 cos 9 π cos 9 2 π cos 9 4 π cos 9 π + cos 9 3 π + cos 9 5 π − cos 9 2 π + 1 = 2 cos 9 π cos 9 2 π cos 9 4 π cos 9 π + cos 9 3 π + cos 9 5 π + cos 9 7 π + 1 = 2 × 8 1 cos 9 π + cos 9 3 π + cos 9 5 π + cos 9 7 π + 1 = 4 1 2 3 = 6 Note: 2 cos ( A − B ) + cos ( A + B ) = cos A cos B Note: cos ( π − x ) = − cos x Note: k = 0 ∏ n cos ( 2 n + 1 + 1 2 k π ) = 2 n + 1 1 Note: k = 1 ∑ n cos ( 2 n + 1 2 k − 1 π ) = 2 1
Note: k = 0 ∑ n − 1 cos ( 2 n + 1 2 k + 1 π ) = 2 1 (see proof ).
Let Φ 9 ( x ) = x 6 − x 3 + 1 be the 9th cyclotomic polynomial. We know that it has roots x k = e 2 π k i / 9 for k ∈ { 1 , 2 , 4 , 5 , 7 , 8 } . Then, we have: x k 6 − x k 3 + 1 = 0 ⟺ x k 3 + x k 3 1 = 1 ⟺ ( x k + x k 1 ) 3 − 3 ( x k + x k 1 ) − 1 = 0 . We also know that c k = x k + x k 1 = 2 cos ( 9 2 π k ) , and since cos ( θ ) = cos ( 2 π − θ ) , the polynomial c 3 − 3 c − 1 = 0 will have roots c k only for k ∈ { 1 , 2 , 4 } .
The expression we want is cos 9 2 π 1 + cos 9 4 π 1 + cos 9 8 π 1 , and by Vieta's formulas, that is 2 ( − 1 − 3 ) = 6 .
Problem Loading...
Note Loading...
Set Loading...
sec 9 4 π + sec 9 2 π − sec 9 π = cos 9 4 π 1 + cos 9 2 π 1 − cos 9 π 1 = cos 9 4 π cos 9 2 π cos 9 2 π + cos 9 4 π − cos 9 π 1 = cos 9 4 π cos 9 2 π 2 cos 3 π cos 9 π − cos 9 π 1
= cos 9 4 π cos 9 2 π 2 ( 2 1 ) cos 9 π − cos 9 π 1 = cos 9 4 π cos 9 2 π cos 9 π − cos 9 π 1 = cos 9 π cos 9 2 π cos 9 4 π cos 2 9 π − cos 9 4 π cos 9 2 π = 2 sin 9 π cos 9 π cos 9 2 π cos 9 4 π 2 sin 9 π cos 2 9 π − 2 sin 9 π cos 9 4 π cos 9 2 π
= sin 9 2 π cos 9 2 π cos 9 4 π sin 9 2 π cos 9 π − sin 9 π ( cos 3 2 π + cos 9 2 π ) = sin 9 2 π cos 9 2 π cos 9 4 π sin 9 2 π cos 9 π − sin 9 π ( − 2 1 + cos 9 2 π ) = sin 9 2 π cos 9 2 π cos 9 4 π sin 9 2 π cos 9 π − sin 9 π cos 9 2 π + 2 1 sin 9 π
= sin 9 2 π cos 9 2 π cos 9 4 π sin ( 9 2 π − 9 π ) + 2 1 sin 9 π = sin 9 2 π cos 9 2 π cos 9 4 π sin 9 π + 2 1 sin 9 π = 2 sin 9 2 π cos 9 2 π cos 9 4 π 2 sin 9 π + sin 9 π = sin 9 ( 2 × 2 ) π cos 9 4 π ( 2 + 1 ) sin 9 π = sin 9 4 π cos 9 4 π 3 sin 9 π
= 2 sin 9 4 π cos 9 4 π 2 ( 3 sin 9 π ) = sin 9 ( 2 × 4 ) π ( 2 × 3 ) sin 9 π = sin 9 8 π 6 sin 9 π = sin ( π − 9 8 π ) 6 sin 9 π = sin 9 π 6 sin 9 π = 6