Trigonometry Challenge 3

Geometry Level 3

sec 4 π 9 + sec 2 π 9 sec π 9 = ? \large \sec{\frac{4\pi}{9}}+\sec{\frac{2\pi}{9}}-\sec{\frac{\pi}{9}}=\boxed{?}


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Noel Lo
Jul 19, 2017

sec 4 π 9 + sec 2 π 9 sec π 9 = 1 cos 4 π 9 + 1 cos 2 π 9 1 cos π 9 = cos 2 π 9 + cos 4 π 9 cos 4 π 9 cos 2 π 9 1 cos π 9 = 2 cos π 3 cos π 9 cos 4 π 9 cos 2 π 9 1 cos π 9 \sec{\frac{4\pi}{9}}+\sec{\frac{2\pi}{9}}-\sec{\frac{\pi}{9}}=\frac{1}{\cos{\frac{4\pi}{9}}}+\frac{1}{\cos{\frac{2\pi}{9}}}-\frac{1}{\cos{\frac{\pi}{9}}}=\frac{\cos{\frac{2\pi}{9}}+\cos{\frac{4\pi}{9}}}{\cos{\frac{4\pi}{9}}\cos{\frac{2\pi}{9}}}-\frac{1}{\cos{\frac{\pi}{9}}}=\frac{2\cos{\frac{\pi}{3}}\cos{\frac{\pi}{9}}}{\cos{\frac{4\pi}{9}}\cos{\frac{2\pi}{9}}}-\frac{1}{\cos{\frac{\pi}{9}}}

= 2 ( 1 2 ) cos π 9 cos 4 π 9 cos 2 π 9 1 cos π 9 = cos π 9 cos 4 π 9 cos 2 π 9 1 cos π 9 = cos 2 π 9 cos 4 π 9 cos 2 π 9 cos π 9 cos 2 π 9 cos 4 π 9 = 2 sin π 9 cos 2 π 9 2 sin π 9 cos 4 π 9 cos 2 π 9 2 sin π 9 cos π 9 cos 2 π 9 cos 4 π 9 =\frac{2(\frac{1}{2})\cos{\frac{\pi}{9}}}{\cos{\frac{4\pi}{9}}\cos{\frac{2\pi}{9}}}-\frac{1}{\cos{\frac{\pi}{9}}}=\frac{\cos{\frac{\pi}{9}}}{\cos{\frac{4\pi}{9}}\cos{\frac{2\pi}{9}}}-\frac{1}{\cos{\frac{\pi}{9}}}=\frac{\cos^{2}{\frac{\pi}{9}}-\cos{\frac{4\pi}{9}}\cos{\frac{2\pi}{9}}}{\cos{\frac{\pi}{9}}\cos{\frac{2\pi}{9}}\cos{\frac{4\pi}{9}}}=\frac{2\sin{\frac{\pi}{9}}\cos^{2}{\frac{\pi}{9}}-2\sin{\frac{\pi}{9}}\cos{\frac{4\pi}{9}}\cos{\frac{2\pi}{9}}}{2\sin{\frac{\pi}{9}}\cos{\frac{\pi}{9}}\cos{\frac{2\pi}{9}}\cos{\frac{4\pi}{9}}}

= sin 2 π 9 cos π 9 sin π 9 ( cos 2 π 3 + cos 2 π 9 ) sin 2 π 9 cos 2 π 9 cos 4 π 9 = sin 2 π 9 cos π 9 sin π 9 ( 1 2 + cos 2 π 9 ) sin 2 π 9 cos 2 π 9 cos 4 π 9 = sin 2 π 9 cos π 9 sin π 9 cos 2 π 9 + 1 2 sin π 9 sin 2 π 9 cos 2 π 9 cos 4 π 9 =\frac{\sin{\frac{2\pi}{9}}\cos{\frac{\pi}{9}}-\sin{\frac{\pi}{9}}(\cos{\frac{2\pi}{3}}+\cos{\frac{2\pi}{9}})}{\sin{\frac{2\pi}{9}}\cos{\frac{2\pi}{9}}\cos{\frac{4\pi}{9}}}=\frac{\sin{\frac{2\pi}{9}}\cos{\frac{\pi}{9}}-\sin{\frac{\pi}{9}}(-\frac{1}{2}+\cos{\frac{2\pi}{9}})}{\sin{\frac{2\pi}{9}}\cos{\frac{2\pi}{9}}\cos{\frac{4\pi}{9}}}=\frac{\sin{\frac{2\pi}{9}}\cos{\frac{\pi}{9}}-\sin{\frac{\pi}{9}}\cos{\frac{2\pi}{9}}+\frac{1}{2}\sin{\frac{\pi}{9}}}{\sin{\frac{2\pi}{9}}\cos{\frac{2\pi}{9}}\cos{\frac{4\pi}{9}}}

= sin ( 2 π 9 π 9 ) + 1 2 sin π 9 sin 2 π 9 cos 2 π 9 cos 4 π 9 = sin π 9 + 1 2 sin π 9 sin 2 π 9 cos 2 π 9 cos 4 π 9 = 2 sin π 9 + sin π 9 2 sin 2 π 9 cos 2 π 9 cos 4 π 9 = ( 2 + 1 ) sin π 9 sin ( 2 × 2 ) π 9 cos 4 π 9 = 3 sin π 9 sin 4 π 9 cos 4 π 9 =\frac{\sin{(\frac{2\pi}{9}-\frac{\pi}{9})}+\frac{1}{2}\sin{\frac{\pi}{9}}}{\sin{\frac{2\pi}{9}}\cos{\frac{2\pi}{9}}\cos{\frac{4\pi}{9}}}=\frac{\sin{\frac{\pi}{9}}+\frac{1}{2}\sin{\frac{\pi}{9}}}{\sin{\frac{2\pi}{9}}\cos{\frac{2\pi}{9}}\cos{\frac{4\pi}{9}}}=\frac{2\sin{\frac{\pi}{9}}+\sin{\frac{\pi}{9}}}{2\sin{\frac{2\pi}{9}}\cos{\frac{2\pi}{9}}\cos{\frac{4\pi}{9}}}=\frac{(2+1)\sin{\frac{\pi}{9}}}{\sin{\frac{(2\times2)\pi}{9}}\cos{\frac{4\pi}{9}}}=\frac{3\sin{\frac{\pi}{9}}}{\sin{\frac{4\pi}{9}}\cos{\frac{4\pi}{9}}}

= 2 ( 3 sin π 9 ) 2 sin 4 π 9 cos 4 π 9 = ( 2 × 3 ) sin π 9 sin ( 2 × 4 ) π 9 = 6 sin π 9 sin 8 π 9 = 6 sin π 9 sin ( π 8 π 9 ) = 6 sin π 9 sin π 9 = 6 =\frac{2(3\sin{\frac{\pi}{9})}}{2\sin{\frac{4\pi}{9}}\cos{\frac{4\pi}{9}}}=\frac{(2\times 3)\sin{\frac{\pi}{9}}}{\sin{\frac{(2\times4)\pi}{9}}}=\frac{6\sin{\frac{\pi}{9}}}{\sin{\frac{8\pi}{9}}}=\frac{6\sin{\frac{\pi}{9}}}{\sin{(\pi-\frac{8\pi}{9})}}=\frac{6\sin{\frac{\pi}{9}}}{\sin{\frac{\pi}{9}}}=\boxed{6}

Chew-Seong Cheong
Jul 23, 2017

X = sec 4 π 9 + sec 2 π 9 sec π 9 = 1 cos 4 π 9 + 1 cos 2 π 9 1 cos π 9 = cos 2 π 9 cos π 9 + cos 4 π 9 cos π 9 cos 4 π 9 cos 2 π 9 cos 4 π 9 cos 2 π 9 cos π 9 Note: cos ( A B ) + cos ( A + B ) 2 = cos A cos B = cos π 9 + cos π 3 + cos π 3 + cos 5 π 9 cos 2 π 9 cos 2 π 3 2 cos π 9 cos 2 π 9 cos 4 π 9 = cos π 9 + cos 3 π 9 + cos 5 π 9 cos 2 π 9 + 1 2 cos π 9 cos 2 π 9 cos 4 π 9 Note: cos ( π x ) = cos x = cos π 9 + cos 3 π 9 + cos 5 π 9 + cos 7 π 9 + 1 2 cos π 9 cos 2 π 9 cos 4 π 9 Note: k = 0 n cos ( 2 k π 2 n + 1 + 1 ) = 1 2 n + 1 = cos π 9 + cos 3 π 9 + cos 5 π 9 + cos 7 π 9 + 1 2 × 1 8 Note: k = 1 n cos ( 2 k 1 2 n + 1 π ) = 1 2 = 3 2 1 4 = 6 \begin{aligned} X & = \sec \frac {4\pi}9 + \sec \frac {2\pi}9 - \sec \frac \pi 9 \\ & = \frac 1{\cos \frac {4\pi}9} + \frac 1{\cos \frac {2\pi}9} - \frac 1{\cos \frac \pi 9} \\ & = \frac {\cos \frac {2\pi}9 \cos \frac \pi 9+\cos \frac {4\pi}9 \cos \frac \pi 9-\cos \frac {4\pi}9 \cos \frac {2\pi}9} {\cos \frac {4\pi}9 \cos \frac {2\pi}9 \cos \frac \pi 9} & \small \color{#3D99F6} \text{Note: } \frac {\cos(A-B)+\cos(A+B)}2 = \cos A \cos B \\ & = \frac {\cos \frac \pi 9 + {\color{#3D99F6}\cos \frac \pi 3}+\cos \frac \pi 3 + \cos \frac {5\pi}9 - \cos \frac {2\pi}9 - \cos \frac {2\pi}3}{2 \cos \frac \pi 9 \cos \frac {2\pi}9 \cos \frac {4\pi}9} \\ & = \frac {\cos \frac \pi 9 + {\color{#3D99F6}\cos \frac {3\pi}9} + \cos \frac {5\pi}9 {\color{#D61F06}- \cos \frac {2\pi}9} + 1}{2 \cos \frac \pi 9 \cos \frac {2\pi}9 \cos \frac {4\pi}9} & \small \color{#D61F06} \text{Note: } \cos (\pi - x) = - \cos x \\ & = \frac {\cos \frac \pi 9 +\cos \frac {3\pi}9 + \cos \frac {5\pi}9 {\color{#D61F06}+ \cos \frac {7\pi}9} + 1}{2 \color{#3D99F6} \cos \frac \pi 9 \cos \frac {2\pi}9 \cos \frac {4\pi}9} & \small \color{#3D99F6} \text{Note: }\prod_{k=0}^n \cos \left(\frac {2^k \pi}{2^{n+1}+1}\right) = \frac 1{2^{n+1}} \\ & = \frac {{\color{#D61F06}\cos \frac \pi 9 +\cos \frac {3\pi}9 + \cos \frac {5\pi}9 + \cos \frac {7\pi}9} + 1}{2 \color{#3D99F6} \times \frac 18} & \small \color{#D61F06} \text{Note: }\sum_{k=1}^n \cos \left(\frac {2k-1}{2n+1} \pi \right) = \frac 12 \\ & = \frac {\frac 32}{\frac 14} = \boxed{6} \end{aligned}


Note: k = 0 n 1 cos ( 2 k + 1 2 n + 1 π ) = 1 2 \displaystyle \sum_{k=0}^{n-1} \cos \left( \frac {2k+1}{2n+1}\pi \right) = \frac 12 (see proof ).

Let Φ 9 ( x ) = x 6 x 3 + 1 \Phi_9(x)=x^6-x^3+1 be the 9th cyclotomic polynomial. We know that it has roots x k = e 2 π k i / 9 x_k=e^{2 \pi k i / 9} for k { 1 , 2 , 4 , 5 , 7 , 8 } k \in \{1,2,4,5,7,8\} . Then, we have: x k 6 x k 3 + 1 = 0 x k 3 + 1 x k 3 = 1 ( x k + 1 x k ) 3 3 ( x k + 1 x k ) 1 = 0 x_k^6-x_k^3+1=0 \Longleftrightarrow x_k^3+\dfrac{1}{x_k^3}=1 \Longleftrightarrow \left(x_k+\dfrac{1}{x_k}\right)^3-3\left(x_k+\dfrac{1}{x_k}\right)-1=0 . We also know that c k = x k + 1 x k = 2 cos ( 2 π k 9 ) c_k=x_k+\dfrac{1}{x_k}=2\cos\left(\dfrac{2 \pi k}{9}\right) , and since cos ( θ ) = cos ( 2 π θ ) \cos(\theta)=\cos(2\pi-\theta) , the polynomial c 3 3 c 1 = 0 c^3-3c-1=0 will have roots c k c_k only for k { 1 , 2 , 4 } k \in \{1,2,4\} .

The expression we want is 1 cos 2 π 9 + 1 cos 4 π 9 + 1 cos 8 π 9 \dfrac{1}{\cos \frac{2\pi}{9}}+\dfrac{1}{\cos \frac{4\pi}{9}}+\dfrac{1}{\cos \frac{8\pi}{9}} , and by Vieta's formulas, that is 2 ( 3 1 ) = 6 2\left(-\dfrac{-3}{1}\right)=\boxed{6} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...