Trigonometry Challenge 4

Geometry Level 3

tan 11 π 30 tan π 30 sin 11 π 15 sin π 15 = ? \large \frac{\tan{\frac{11\pi}{30}}-\tan{\frac{\pi}{30}}}{\sin{\frac{11\pi}{15}}-\sin{\frac{\pi}{15}}}=\boxed{?}


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Jul 25, 2017

X = tan 11 π 30 tan π 30 sin 11 π 15 sin π 15 Note: tan ( π x ) = tan x = tan 19 π 30 tan π 30 sin ( 2 π 5 + π 3 ) sin ( 2 π 5 π 3 ) = tan π 3 ( tan 10 π 30 + tan 19 π 30 + tan π 30 ) 2 cos 2 π 5 sin π 3 If A + B + C = π tan A + tan B + tan C = tan A tan B tan C = tan π 3 tan π 3 tan 19 π 30 tan π 30 3 cos 2 π 5 = 1 sin 19 π 30 sin π 30 cos 19 π 30 cos π 30 cos 2 π 5 = cos 19 π 30 cos π 30 sin 19 π 30 sin π 30 cos 2 π 5 cos 19 π 30 cos π 30 Note: cos ( A + B ) = cos A cos B sin A sin B = cos 2 π 3 1 2 cos 2 π 5 ( cos 3 π 5 + cos 2 π 3 ) Note: cos A cos B = 1 2 ( cos ( A B ) + cos ( A + B ) ) = 1 cos 2 π 5 ( cos 2 π 5 1 2 ) Note: cos ( π x ) = cos x = 2 2 cos 2 2 π 5 + cos 2 π 5 Note: cos 2 x = 2 cos 2 x 1 = 2 cos 4 π 5 + cos 2 π 5 + 1 Note: k = 1 n cos 2 k π 2 n + 1 = 1 2 = 2 1 2 + 1 = 4 \begin{aligned} X & = \frac {{\color{#3D99F6}\tan \frac{11\pi}{30}}- \tan \frac \pi{30}}{\sin \frac{11\pi}{15}- \sin \frac \pi{15}} & \small \color{#3D99F6} \text{Note: } \tan (\pi - x) = - \tan x \\ & = \frac {{\color{#3D99F6}-\tan \frac{19\pi}{30}}- \tan \frac \pi{30}}{\sin \left(\frac{2\pi}5 + \frac \pi 3\right) - \sin \left(\frac{2\pi}5 - \frac \pi 3\right)} \\ & = \frac {\tan \frac \pi 3 - \left({\color{#3D99F6}\tan \frac{10\pi}{30} +\tan \frac{19\pi}{30} + \tan \frac \pi{30}}\right)}{2 \cos \frac{2\pi}5 \sin \frac \pi 3} & \small \color{#3D99F6} \text{If }A+B+C = \pi \implies \tan A+\tan B + \tan C = \tan A\tan B\tan C \\ & = \frac {\tan \frac \pi 3 - \color{#3D99F6}\tan \frac \pi 3 \tan \frac{19\pi}{30}\tan \frac \pi{30}}{\sqrt 3 \cos \frac{2\pi}5} \\ & = \frac {1 - \frac {\sin \frac{19\pi}{30}\sin \frac \pi{30}}{\cos \frac{19\pi}{30}\cos \frac \pi{30}}}{\cos \frac{2\pi}5} \\ & = \frac {\color{#3D99F6}\cos \frac{19\pi}{30}\cos \frac \pi{30} - \sin \frac{19\pi}{30}\sin \frac \pi{30}}{\cos \frac{2\pi}5\color{#D61F06}\cos \frac{19\pi}{30}\cos \frac \pi{30}} & \small \color{#3D99F6} \text{Note: } \cos (A+B) = \cos A \cos B - \sin A \sin B \\ & = \frac {\color{#3D99F6}\cos \frac {2\pi} 3}{\color{#D61F06}\frac 12 {\color{#333333} \cos \frac{2\pi}5} \left(\cos \frac{3\pi}5 + \cos \frac {2\pi}3\right)} & \small \color{#D61F06} \text{Note: } \cos A \cos B = \frac 12 \left(\cos (A-B) + \cos (A+B)\right) \\ & = \frac {-1}{\cos \frac{2\pi}5 \left({\color{#3D99F6}- \cos \frac{2\pi}5} - \frac 12 \right)} & \small \color{#3D99F6} \text{Note: } \cos (\pi - x) = - \cos x \\ & = \frac 2{{\color{#3D99F6}2\cos^2 \frac{2\pi}5} + \cos \frac{2\pi}5} & \small \color{#3D99F6} \text{Note: } \cos 2x = 2\cos^2 x - 1 \\ & = \frac 2{{\color{#3D99F6}\cos \frac{4\pi}5 + \cos \frac{2\pi}5} + 1} & \small \color{#3D99F6} \text{Note: } \sum_{k=1}^n \cos \frac {2k\pi}{2n+1} = - \frac 12 \\ & = \frac 2{{\color{#3D99F6}-\frac 12} + 1} \\ & = \boxed{4} \end{aligned}


Note: k = 0 n 1 cos ( 2 k π 2 n + 1 ) = 1 2 \displaystyle \sum_{k=0}^{n-1} \cos \left( \frac {2k\pi}{2n+1} \right) = -\frac 12 (see proof here ).

How is that k = 1 n cos 2 n π 2 n + 1 = 1 2 \sum_{k=1}^n \cos \frac {2n\pi}{2n+1} = - \frac 12 ?

Kelvin Hong - 3 years, 10 months ago

Log in to reply

The following is the proof for k = 0 n 1 cos ( 2 k + 1 2 n + 1 π ) = 1 2 \displaystyle \sum_{k=0}^{n-1} \cos \left( \frac {2k+1}{2n+1}\pi \right) = \frac 12 . Similar proof for k = 0 n 1 cos ( 2 k 2 n + 1 π ) = 1 2 \displaystyle \sum_{k=0}^{n-1} \cos \left( \frac {2k}{2n+1}\pi \right) = - \frac 12 .

S = k = 0 n 1 cos ( 2 k + 1 2 n + 1 π ) = { k = 0 n 1 e 2 k + 1 2 n + 1 π i } = { e π i 2 n + 1 k = 0 n 1 e 2 k π i 2 n + 1 } = { e π i 2 n + 1 ( 1 e 2 n π i 2 n + 1 1 e 2 π i 2 n + 1 ) } = { e π i 2 n + 1 e π i 1 e 2 π i 2 n + 1 } = { e π i 2 n + 1 + 1 ( 1 + e π i 2 n + 1 ) ( 1 e π i 2 n + 1 ) } = { 1 1 e π i 2 n + 1 } = { 1 1 cos π i 2 n + 1 i sin π i 2 n + 1 } = { 1 cos π i 2 n + 1 + i sin π i 2 n + 1 ( 1 cos π i 2 n + 1 ) 2 + sin 2 π i 2 n + 1 } = { 1 cos π i 2 n + 1 + i sin π i 2 n + 1 2 2 cos π i 2 n + 1 } = 1 2 \begin{aligned} S & = \sum_{k=0}^{n-1} \cos \left( \frac {2k+1}{2n+1}\pi \right) \\ & = \Re \left \{ \sum_{k=0}^{n-1} e^{\frac {2k+1}{2n+1}\pi i} \right \} \\ & = \Re \left \{e^{\frac {\pi i}{2n+1}} \sum_{k=0}^{n-1} e^{\frac {2k\pi i}{2n+1}} \right \} \\ & = \Re \left \{e^{\frac {\pi i}{2n+1}} \left(\frac {1-e^{\frac {2n\pi i}{2n+1}}}{1-e^{\frac {2\pi i}{2n+1}}}\right) \right \} \\ & = \Re \left \{ \frac {e^{\frac {\pi i}{2n+1}}-e^{\pi i}}{1-e^{\frac {2\pi i}{2n+1}}} \right \} \\ & = \Re \left \{ \frac {e^{\frac {\pi i}{2n+1}} + 1}{\left(1+e^{\frac {\pi i}{2n+1}} \right) \left(1-e^{\frac {\pi i}{2n+1}} \right)} \right \} \\ & = \Re \left \{ \frac 1{1-e^{\frac {\pi i}{2n+1}}} \right \} \\ & = \Re \left \{ \frac 1{1-\cos \frac {\pi i}{2n+1} - i\sin \frac {\pi i}{2n+1}} \right \} \\ & = \Re \left \{ \frac {1-\cos \frac {\pi i}{2n+1} + i\sin \frac {\pi i}{2n+1}}{\left(1-\cos \frac {\pi i}{2n+1}\right)^2 + \sin^2 \frac {\pi i}{2n+1}} \right \} \\ & = \Re \left \{ \frac {1-\cos \frac {\pi i}{2n+1} + i\sin \frac {\pi i}{2n+1}}{2-2\cos \frac {\pi i}{2n+1}} \right \} \\ & = \frac 12 \end{aligned}

Chew-Seong Cheong - 3 years, 10 months ago

Log in to reply

Wow, so it is proved by using complex number. Thanks for explanation!

Kelvin Hong - 3 years, 10 months ago
Ahmad Saad
Jul 25, 2017

Noel Lo
Jul 25, 2017

tan 11 π 30 tan π 30 sin 11 π 15 sin π 15 = sin 11 π 30 cos 11 π 30 sin π 30 cos π 30 2 sin 11 π 30 cos 11 π 30 2 sin π 30 cos π 30 = sin 11 π 30 cos π 30 cos 11 π 30 sin π 30 cos 11 π 30 cos π 30 ( 2 sin 11 π 30 cos 11 π 30 2 sin π 30 cos π 30 ) = sin ( 11 1 ) π 30 2 sin 11 π 30 cos π 30 cos 2 11 π 30 2 sin π 30 cos 11 π 30 cos 2 π 30 \frac{\tan{\frac{11\pi}{30}}-\tan{\frac{\pi}{30}}}{\sin{\frac{11\pi}{15}}-\sin{\frac{\pi}{15}}}=\frac{\frac{\sin{\frac{11\pi}{30}}}{\cos{\frac{11\pi}{30}}}-\frac{\sin{\frac{\pi}{30}}}{\cos{\frac{\pi}{30}}}}{2\sin{\frac{11\pi}{30}}\cos{\frac{11\pi}{30}}-2\sin{\frac{\pi}{30}}\cos{\frac{\pi}{30}}}=\frac{\sin{\frac{11\pi}{30}}\cos{\frac{\pi}{30}}-\cos{\frac{11\pi}{30}}\sin{\frac{\pi}{30}}}{\cos{\frac{11\pi}{30}}\cos{\frac{\pi}{30}}(2\sin{\frac{11\pi}{30}}\cos{\frac{11\pi}{30}}-2\sin{\frac{\pi}{30}}\cos{\frac{\pi}{30}})}=\frac{\sin{\frac{(11-1)\pi}{30}}}{2\sin{\frac{11\pi}{30}}\cos{\frac{\pi}{30}}\cos^{2}{\frac{11\pi}{30}}-2\sin{\frac{\pi}{30}}\cos{\frac{11\pi}{30}}\cos^{2}{\frac{\pi}{30}}}

= sin 10 π 30 ( sin 12 π 30 + sin 10 π 30 ) cos 2 11 π 30 ( sin 12 π 30 sin 10 π 30 ) cos 2 π 30 = sin π 3 ( sin 2 π 5 + sin π 3 ) cos 2 11 π 30 ( sin 2 π 5 sin π 3 ) cos 2 π 30 = 3 2 ( sin 2 π 5 + 3 2 ) cos 2 11 π 30 ( sin 2 π 5 3 2 ) cos 2 π 30 =\frac{\sin{\frac{10\pi}{30}}}{(\sin{\frac{12\pi}{30}}+\sin{\frac{10\pi}{30}})\cos^{2}{\frac{11\pi}{30}}-(\sin{\frac{12\pi}{30}}-\sin{\frac{10\pi}{30}})\cos^{2}{\frac{\pi}{30}}}=\frac{\sin{\frac{\pi}{3}}}{(\sin{\frac{2\pi}{5}}+\sin{\frac{\pi}{3}})\cos^{2}{\frac{11\pi}{30}}-(\sin{\frac{2\pi}{5}}-\sin{\frac{\pi}{3}})\cos^{2}{\frac{\pi}{30}}}=\frac{{\frac{\sqrt{3}}{2}}}{(\sin{\frac{2\pi}{5}}+{\frac{\sqrt{3}}{2}})\cos^{2}{\frac{11\pi}{30}}-(\sin{\frac{2\pi}{5}}-{\frac{\sqrt{3}}{2}})\cos^{2}{\frac{\pi}{30}}}

= 3 2 sin 2 π 5 ( cos 2 11 π 30 cos 2 π 30 ) + 3 2 ( cos 2 11 π 30 + cos 2 π 30 ) = 3 2 sin 2 π 5 ( cos 2 11 π 30 cos 2 π 30 ) + 3 ( cos 2 11 π 30 + cos 2 π 30 ) =\frac{{\frac{\sqrt{3}}{2}}}{\sin{\frac{2\pi}{5}}(\cos^{2}{\frac{11\pi}{30}}-\cos^{2}{\frac{\pi}{30}})+{\frac{\sqrt{3}}{2}}(\cos^{2}{\frac{11\pi}{30}}+\cos^{2}{\frac{\pi}{30}})}=\frac{\sqrt{3}}{2\sin{\frac{2\pi}{5}}(\cos^{2}{\frac{11\pi}{30}}-\cos^{2}{\frac{\pi}{30}})+\sqrt{3}(\cos^{2}{\frac{11\pi}{30}}+\cos^{2}{\frac{\pi}{30}})}

= 3 2 sin 2 π 5 ( cos 11 π 30 cos π 30 ) ( cos 11 π 30 + cos π 30 ) + 3 ( ( cos 11 π 30 + cos π 30 ) 2 2 cos 11 π 30 cos π 30 ) =\frac{\sqrt{3}}{2\sin{\frac{2\pi}{5}}(\cos{\frac{11\pi}{30}}-\cos{\frac{\pi}{30}})(\cos{\frac{11\pi}{30}}+\cos{\frac{\pi}{30}})+\sqrt{3}((\cos{\frac{11\pi}{30}}+\cos{\frac{\pi}{30}})^{2}-2\cos{\frac{11\pi}{30}}\cos{\frac{\pi}{30}})}

= 3 2 sin 2 π 5 ( 2 sin ( 1 2 12 π 30 ) sin ( 1 2 10 π 30 ) ) ( 2 cos ( 1 2 12 π 30 ) cos ( 1 2 10 π 30 ) ) + 3 ( 4 cos 2 6 π 30 cos 2 5 π 30 cos 12 π 30 cos 10 π 30 ) = 3 2 sin 2 2 π 5 sin π 3 + 3 ( 4 cos 2 π 5 cos 2 π 6 cos 2 π 5 cos π 3 ) =\frac{\sqrt{3}}{2\sin{\frac{2\pi}{5}}(-2\sin{(\frac{1}{2}\frac{12\pi}{30})}\sin{(\frac{1}{2}\frac{10\pi}{30}))}(2\cos{(\frac{1}{2}\frac{12\pi}{30})}\cos{(\frac{1}{2}\frac{10\pi}{30})})+\sqrt{3}(4\cos^{2}{\frac{6\pi}{30}}\cos^{2}{\frac{5\pi}{30}}-\cos{\frac{12\pi}{30}}-\cos{\frac{10\pi}{30}})}=\frac{\sqrt{3}}{-2\sin^{2}{\frac{2\pi}{5}}\sin{\frac{\pi}{3}}+\sqrt{3}(4\cos^{2}{\frac{\pi}{5}}\cos^{2}{\frac{\pi}{6}}-\cos{\frac{2\pi}{5}}-\cos{\frac{\pi}{3}})}

= 3 3 sin 2 2 π 5 + 3 ( 3 cos 2 π 5 cos 2 π 5 1 2 ) = 1 sin 2 2 π 5 + 3 cos 2 π 5 cos 2 π 5 1 2 = 1 cos 4 π 5 1 2 + 3 cos 2 π 5 2 cos 2 π 5 + 1 1 2 = 1 1 2 cos 4 π 5 + cos 2 π 5 = 1 1 2 cos π 5 + cos 2 π 5 =\frac{\sqrt{3}}{-\sqrt{3}\sin^{2}{\frac{2\pi}{5}}+\sqrt{3}(3\cos^{2}{\frac{\pi}{5}}-\cos{\frac{2\pi}{5}}-\frac{1}{2})}=\frac{1}{-\sin^{2}{\frac{2\pi}{5}}+3\cos^{2}{\frac{\pi}{5}}-\cos{\frac{2\pi}{5}}-\frac{1}{2}}=\frac{1}{\frac{\cos{\frac{4\pi}{5}}-1}{2}+3\cos^{2}{\frac{\pi}{5}}-2\cos^{2}{\frac{\pi}{5}}+1-\frac{1}{2}}=\frac{1}{\frac{1}{2}\cos{\frac{4\pi}{5}}+\cos^{2}{\frac{\pi}{5}}}=\frac{1}{-\frac{1}{2}\cos{\frac{\pi}{5}}+\cos^{2}{\frac{\pi}{5}}}

= 4 sin π 5 4 sin π 5 cos 2 π 5 2 sin π 5 cos π 5 = 4 sin π 5 2 sin 2 π 5 cos π 5 sin 2 π 5 = 4 sin π 5 sin ( 2 + 1 ) π 5 + sin ( 2 1 ) π 5 sin 2 π 5 = 4 sin π 5 sin 3 π 5 + sin π 5 sin 2 π 5 = 4 sin π 5 sin ( 5 3 ) π 5 + sin π 5 sin 2 π 5 =\frac{4\sin{\frac{\pi}{5}}}{4\sin{\frac{\pi}{5}}\cos^{2}{\frac{\pi}{5}}-2\sin{\frac{\pi}{5}}\cos{\frac{\pi}{5}}}=\frac{4\sin{\frac{\pi}{5}}}{2\sin{\frac{2\pi}{5}}\cos{\frac{\pi}{5}}-\sin{\frac{2\pi}{5}}}=\frac{4\sin{\frac{\pi}{5}}}{\sin{\frac{(2+1)\pi}{5}}+\sin{\frac{(2-1)\pi}{5}}-\sin{\frac{2\pi}{5}}}=\frac{4\sin{\frac{\pi}{5}}}{\sin{\frac{3\pi}{5}}+\sin{\frac{\pi}{5}}-\sin{\frac{2\pi}{5}}}=\frac{4\sin{\frac{\pi}{5}}}{\sin{\frac{(5-3)\pi}{5}}+\sin{\frac{\pi}{5}}-\sin{\frac{2\pi}{5}}}

= 4 sin π 5 sin 2 π 5 + sin π 5 sin 2 π 5 = 4 sin π 5 sin π 5 = 4 =\frac{4\sin{\frac{\pi}{5}}}{\sin{\frac{2\pi}{5}}+\sin{\frac{\pi}{5}}-\sin{\frac{2\pi}{5}}}=\frac{4\sin{\frac{\pi}{5}}}{\sin{\frac{\pi}{5}}}=\boxed{4}

S = tan 6 6 tan 6 sin 13 2 sin 1 2 = sin 6 6 cos 6 6 sin 6 cos 6 2 cos 7 2 sin 6 0 = sin 6 6 cos 6 cos 6 6 sin 6 2 cos 6 6 cos 6 cos 7 2 sin 6 0 = sin 6 0 ( cos 7 2 + cos 6 0 ) cos 7 2 sin 6 0 = 1 cos 2 7 2 + 1 2 cos 7 2 = 4 4 cos 2 7 2 + 2 cos 7 2 = 4 1 = 4 \begin{aligned} S &= \dfrac{\tan 66^\circ - \tan 6^\circ}{\sin 132^\circ - \sin 12^\circ}\\ &= \dfrac{\frac{\sin 66^\circ}{\cos 66^\circ} - \frac{\sin 6^\circ}{\cos 6^\circ}}{2\cos 72^\circ \sin 60^\circ}\\ &= \dfrac{\sin 66^\circ \cos 6^\circ - \cos 66^\circ \sin 6^\circ}{2 \cos 66^\circ \cos 6^\circ \cos 72^\circ \sin 60^\circ}\\ &= \dfrac{\sin 60^\circ}{(\cos 72^\circ+\cos 60^\circ) \cos 72^\circ \sin 60^\circ}\\ &= \dfrac{1}{\cos^2 72^\circ + \frac{1}{2}\cos 72^\circ}\\ &= \dfrac{4}{4 \cos^2 72^\circ+2\cos 72^\circ}\\ &= \dfrac{4}{1}\\ &= \boxed{4} \end{aligned}

Note that since cos 7 2 = 5 1 4 \cos 72^\circ=\dfrac{\sqrt{5}-1}{4} , then 4 cos 7 2 + 1 = 5 4\cos 72^\circ + 1=\sqrt{5} , so 16 cos 2 7 2 + 8 cos 7 2 + 1 = 5 16\cos^2 72^\circ+8\cos 72^\circ+1=5 , and 4 cos 2 7 2 + 2 cos 7 2 = 1 4\cos^2 72^\circ+2\cos 72^\circ=1 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...