Trigonometry challenging question

Algebra Level 3

tan x + 2 tan 2 x + 4 tan 4 x + 8 cot 8 x = ? \tan x + 2 \tan 2x+ 4 \tan 4x + 8 \cot 8x= \ ?

cot 2 x \cot 2x tan 2 x \tan 2x cot x \cot x tan x \tan x

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Aug 20, 2020

X = tan x + 2 tan 2 x + 4 tan 4 x + 8 cot 8 x = tan x + 2 tan 2 x + 4 tan 4 x + 4 ( 1 tan 2 4 x ) tan 4 x = tan x + 2 tan 2 x + 4 tan 4 x = tan x + 2 tan 2 x + 2 ( 1 tan 2 2 x ) tan 2 x = tan x + 2 tan 2 x = tan x + 1 tan 2 x tan x = 1 tan x = cot x \begin{aligned} X & = \tan x + 2 \tan 2x + 4 \tan 4x + 8 \cot 8x \\ & = \tan x + 2 \tan 2x + 4 \tan 4x + \frac {4 (1-\tan^2 4x)}{\tan 4x} \\ & = \tan x + 2 \tan 2x + \frac 4{\tan 4x} \\ & = \tan x + 2 \tan 2x + \frac {2(1-\tan^2 2x)}{\tan 2x} \\ & = \tan x + \frac 2{\tan 2x} \\ & = \tan x + \frac {1-\tan^2 x}{\tan x} \\ & = \frac 1{\tan x} = \boxed{\cot x} \end{aligned}


Generalization: For positive integer n n :

tan x + 2 tan 2 x + 4 tan 4 x + + 2 n 1 tan 2 n 1 x + 2 n cot 2 n x = cot x \tan x + 2 \tan 2x + 4 \tan 4x + \cdots + 2^{n-1} \tan 2^{n-1} x + 2^n \cot 2^n x = \cot x

Very nice. This shows you can extend the pattern indefinitely.

Chris Lewis - 9 months, 3 weeks ago

Log in to reply

Yes, you are right.

Chew-Seong Cheong - 9 months, 3 weeks ago
Priyanshu Singh
Aug 20, 2020

For solution visit .

@Priyanshu Singh , I have edited your problem statement. Please check how did I use LaTex.

Chew-Seong Cheong - 9 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...