It ain't that hard for me

Geometry Level 3

cos 2 ( 1 0 ) + cos 2 ( 5 0 ) + cos 2 ( 7 0 ) = ? \large \cos^2(10^{\circ})+\cos^2(50^{\circ})+\cos^2(70^{\circ})= \ ?


Try more Trigonometry Problems .


The answer is 1.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Oct 31, 2014

cos 2 1 0 + cos 2 5 0 + cos 2 7 0 \cos^2{10^\circ} + \cos^2{50^\circ} + \cos^2{70^\circ}

= cos 2 1 0 + ( cos 6 0 cos 1 0 + sin 6 0 sin 1 0 ) 2 + ( cos 6 0 cos 1 0 sin 6 0 sin 1 0 ) 2 = \cos^2{10^\circ} + (\cos{60^\circ}\cos{10^\circ} + \sin{60^\circ}\sin{10^\circ} )^2 + (\cos{60^\circ}\cos{10^\circ} - \sin{60^\circ}\sin{10^\circ} )^2

= cos 2 1 0 + ( 1 2 cos 1 0 + 3 2 sin 1 0 ) 2 + ( 1 2 cos 1 0 3 2 sin 1 0 ) 2 =\cos^2{10^\circ} + (\frac {1}{2} \cos{10^\circ} + \frac {\sqrt{3}}{2}\sin{10^\circ} )^2 + (\frac {1}{2} \cos{10^\circ} - \frac {\sqrt{3}}{2}\sin{10^\circ} )^2

= cos 2 1 0 + 1 4 cos 2 1 0 + 3 2 sin 1 0 cos 1 0 + 3 4 sin 2 1 0 + 1 4 cos 2 1 0 3 2 sin 1 0 cos 1 0 + 3 4 sin 2 1 0 =\cos^2{10^\circ} + \frac {1}{4} \cos^2{10^\circ} + \frac {\sqrt{3}}{2} \sin {10^\circ} \cos {10^\circ} + \frac {3}{4}\sin^2{10^\circ} + \frac {1}{4} \cos^2{10^\circ} - \frac {\sqrt{3}}{2} \sin {10^\circ} \cos {10^\circ} + \frac {3}{4}\sin^2{10^\circ}

= cos 2 1 0 + 1 2 cos 2 1 0 + 3 2 sin 2 1 0 = 3 2 ( cos 2 1 0 + sin 2 1 0 ) = 3 2 = 1.5 =\cos^2{10^\circ} + \frac {1}{2} \cos^2{10^\circ} + \frac {3}{2}\sin^2{10^\circ} = \frac {3}{2} (\cos^2{10^\circ} + \sin^2{10^\circ} ) = \frac {3}{2} = \boxed {1.5}

Mas Mus
Apr 26, 2015

cos 2 1 0 + cos 2 5 0 + cos 2 7 0 = 3 2 + 1 2 ( cos 2 0 + cos 10 0 + cos 14 0 ) = 3 2 + 1 2 ( 2 cos 6 0 cos 4 0 + cos 14 0 ) = 3 2 + 1 2 ( cos 4 0 + cos 14 0 ) = 3 2 + 1 2 ( 2 cos 9 0 cos 5 0 ) = 3 2 \cos^2{10^\circ}+\cos^2{50^\circ}+\cos^2{70^\circ}\\=\frac{3}{2}+\frac{1}{2}\left(\cos20^\circ+\cos100^\circ+\cos140^\circ\right)\\=\frac{3}{2}+\frac{1}{2}\left(2\cos60^\circ\cos40^\circ+\cos140^\circ\right)=\frac{3}{2}+\frac{1}{2}\left(\cos40^\circ+\cos140^\circ\right)\\=\frac{3}{2}+\frac{1}{2}\left(2\cos90^\circ\cos50^\circ\right)=~\frac{3}{2}

Incredible Mind
Dec 7, 2014

i feel using complex numbers would be better...

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...