Trigonometry Crackers

Algebra Level 2

Given that A A , B B , and C C satisfy

cos ( A B ) + cos ( B C ) + cos ( C A ) = 3 2 \cos (A-B)+ \cos(B-C)+\cos(C-A)=-\frac 32

calculate the value of sin A + cos A + sin B + cos B + sin C + cos C \sin A+ \cos A+ \sin B+ \cos B+ \sin C+ \cos C .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Mohammed Imran
Feb 25, 2020

The equation can be rewritten as 2SinASinB+2SinBSinC+2SinCSinA +2CosACosB+2CosBCosC+2CosCCosA=-3. Now this can be rewritten as S i n 2 A + S i n 2 B + S i n 2 C + 2 S i n A S i n B + 2 S i n B S i n C + 2 S i n C S i n A + C o s 2 A + C o s 2 B + C o s 2 C + 2 C o s A C o s B + 2 C o s B C o s C + 2 C o s C C o s A = 0 Sin^2A+Sin^2B+Sin^2C+2SinASinB+2SinBSinC+2SinCSinA +Cos^2A+Cos^2B+Cos^2C+2CosACosB+2CosBCosC+2CosCCosA=0 which implies that ( S i n A + S i n B + S i n C ) 2 + ( C o s A + C o s B + C o s C ) 2 = 0 (SinA+SinB+SinC)^2+(CosA+CosB+CosC)^2=0 .Let SinA+SinB+SinC=a,CosA+CosB+CosC=b. It implies that a 2 + b 2 = 0 a^2+b^2=0 which implies that a=b=0. Since a+b is what we need, a+b=0.

You should key in as \cos A \sin B \tan C cos A sin B tan C \cos A \sin B \tan C . The backslash \ is necessary. Note that the function title is not italic but the variable or constant is. It is international standard to use small letter sin, cos, tan instead of capital letters Sin, Cos, Tan. I have edited your problem. You can take a look.

Chew-Seong Cheong - 1 year, 3 months ago

Thank you very much, Chew-Seong Cheong!!!!

Mohammed Imran - 1 year, 3 months ago
Chew-Seong Cheong
Feb 25, 2020

Consider the following sum:

S = ( cos A + cos B + cos C ) 2 + ( sin A + sin B + sin C ) 2 = cos 2 A + cos 2 B + cos 2 C + 2 ( cos A cos B + cos B cos C + cos C cos A ) + sin 2 A + sin 2 B + sin 2 C + 2 ( sin A sin B + sin B sin C + sin C cos A ) As sin 2 θ + cos 2 θ = 1 = 3 + 2 ( cos A cos B + sin A sin B + cos B cos C + sin B sin C + cos C cos A + sin C sin A ) = 3 + 2 ( cos ( A B ) + cos ( B C ) + cos ( C A ) ) = 3 + 2 ( 3 2 ) = 0 \small \begin{aligned} S & = (\cos A + \cos B + \cos C)^2 + (\sin A + \sin B + \sin C)^2 \\ & = \cos^2 A + \cos^2 B + \cos^2 C + 2(\cos A \cos B + \cos B\cos C + \cos C\cos A) \\ & \quad + \sin^2 A + \sin^2 B + \sin^2 C + 2(\sin A \sin B + \sin B\sin C + \sin C\cos A) & \small \blue{\text{As }\sin^2 \theta + \cos^2 \theta = 1} \\ & = 3 + 2(\cos A \cos B + \sin A \sin B + \cos B\cos C + \sin B \sin C + \cos C\cos A + \sin C \sin A) \\ & = 3 + 2(\blue{\cos (A-B) + \cos (B-C) + \cos (C-A)}) = 3 + 2\left(\blue{-\frac 32}\right) = 0 \end{aligned}

Note that ( cos A + cos B + cos C ) 2 0 (\cos A + \cos B + \cos C)^2 \ge 0 and ( sin A + sin B + sin C ) 2 0 (\sin A + \sin B + \sin C)^2 \ge 0 . Therefore, S = 0 S=0 only when cos A + cos B + cos C = 0 \cos A + \cos B + \cos C = 0 and sin A + sin B + sin C = 0 \sin A + \sin B + \sin C = 0 . Hence sin A + cos A + sin B + cos B + sin C + cos C = 0 \sin A + \cos A + \sin B + \cos B + \sin C + \cos C = \boxed 0 .

Nice solution

Mohammed Imran - 1 year, 3 months ago
Tom Engelsman
Feb 29, 2020

One quickie solution (just chalk it up to cursory observation) is A = 4 π 3 , B = 2 π 3 , C = 0. A = \frac{4\pi}{3}, B = \frac{2\pi}{3}, C = 0.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...