Given that A , B , and C satisfy
cos ( A − B ) + cos ( B − C ) + cos ( C − A ) = − 2 3
calculate the value of sin A + cos A + sin B + cos B + sin C + cos C .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
You should key in as \cos A \sin B \tan C cos A sin B tan C . The backslash \ is necessary. Note that the function title is not italic but the variable or constant is. It is international standard to use small letter sin, cos, tan instead of capital letters Sin, Cos, Tan. I have edited your problem. You can take a look.
Thank you very much, Chew-Seong Cheong!!!!
Consider the following sum:
S = ( cos A + cos B + cos C ) 2 + ( sin A + sin B + sin C ) 2 = cos 2 A + cos 2 B + cos 2 C + 2 ( cos A cos B + cos B cos C + cos C cos A ) + sin 2 A + sin 2 B + sin 2 C + 2 ( sin A sin B + sin B sin C + sin C cos A ) = 3 + 2 ( cos A cos B + sin A sin B + cos B cos C + sin B sin C + cos C cos A + sin C sin A ) = 3 + 2 ( cos ( A − B ) + cos ( B − C ) + cos ( C − A ) ) = 3 + 2 ( − 2 3 ) = 0 As sin 2 θ + cos 2 θ = 1
Note that ( cos A + cos B + cos C ) 2 ≥ 0 and ( sin A + sin B + sin C ) 2 ≥ 0 . Therefore, S = 0 only when cos A + cos B + cos C = 0 and sin A + sin B + sin C = 0 . Hence sin A + cos A + sin B + cos B + sin C + cos C = 0 .
Nice solution
One quickie solution (just chalk it up to cursory observation) is A = 3 4 π , B = 3 2 π , C = 0 .
Problem Loading...
Note Loading...
Set Loading...
The equation can be rewritten as 2SinASinB+2SinBSinC+2SinCSinA +2CosACosB+2CosBCosC+2CosCCosA=-3. Now this can be rewritten as S i n 2 A + S i n 2 B + S i n 2 C + 2 S i n A S i n B + 2 S i n B S i n C + 2 S i n C S i n A + C o s 2 A + C o s 2 B + C o s 2 C + 2 C o s A C o s B + 2 C o s B C o s C + 2 C o s C C o s A = 0 which implies that ( S i n A + S i n B + S i n C ) 2 + ( C o s A + C o s B + C o s C ) 2 = 0 .Let SinA+SinB+SinC=a,CosA+CosB+CosC=b. It implies that a 2 + b 2 = 0 which implies that a=b=0. Since a+b is what we need, a+b=0.