Trigonometry Cycles

Geometry Level 4

If A , B , C A,B,C are angles of a triangle on a plane surface, then M , m M,m be the maximum and minimum value of

cos A cos B cos C c y c ( cos A sin B sin C ) \cos A \cos B \cos C - \displaystyle \sum_{cyc} (\cos A \sin B \sin C) .

Find M m M-m


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ronak Agarwal
Jul 6, 2014

J u s t n o t e t h a t c o s ( A + B + C ) = c o s ( A ) c o s ( B ) c o s ( C ) c y c c o s ( A ) s i n ( B ) s i n ( C ) N o w s i n c e A + B + C = 180 c o s ( A + B + C ) = 1 H e n c e M = m = 1 M m = 0 Just\quad note\quad that\\ cos(A+B+C)=cos(A)cos(B)cos(C)-\sum _{ cyc }^{ }{ cos(A)sin(B)sin(C) } \\ Now\quad since\quad A+B+C=180\quad \Rightarrow cos(A+B+C)=-1\\ Hence\quad M=m=-1\quad \Rightarrow M-m=0\\ \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad

Just a formula based question

Kïñshük Sïñgh - 6 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...