Trigonometry determine types of triangles?

Geometry Level 3

Given that in A B C \triangle ABC , a cos A = b cos B a \cos A= b \cos B . Determine the shape of A B C \triangle ABC .

Obtuse triangle or Scalene triangle Scalene triangle or Right triangle Isosceles triangle or Obtuse triangle Equilateral triangle or Right triangle Obtuse triangle or Right triangle Isosceles triangle or Right triangle Equilateral triangle or Isosceles triangle

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aaghaz Mahajan
Jun 3, 2019

From Sine Rule we know that a b = sin A sin B \displaystyle \frac{a}{b}=\frac{\sin A}{\sin B}

Also, we are given that a b = cos B cos A \displaystyle \frac{a}{b}=\frac{\cos B}{\cos A}

Equating the two equations give us

sin ( 2 A ) sin ( 2 B ) = 0 \sin\left(2A\right)-\sin\left(2B\right)=0

i.e.

2 cos ( A + B ) sin ( A B ) = 0 2\cos\left(A+B\right)\sin\left(A-B\right)=0

Which implies that either A = B \displaystyle A=B meaning the triangle is isosceles or A + B = π 2 \displaystyle A+B=\frac{\pi}{2} meaning that the third angle is a right angle and thus, the triangle is right angled.........

Jovan Boh Jo En
Jun 3, 2019

By the cosine rule, a cos A = b cos B = a a b 2 + c 2 a 2 2 b c = b a 2 + c 2 b 2 2 a c a \cos A=b \cos B=a \Leftrightarrow a \cdot \frac{b^2+c^2-a^2}{2bc}=b \cdot \frac{a^2+c^2-b^2}{2ac} a 2 ( b 2 + c 2 a 2 ) = b 2 ( a 2 + c 2 b 2 ) \Leftrightarrow a^2 \left(b^2+c^2-a^2\right) = b^2 \left(a^2+c^2-b^2\right) a 2 c 2 a 4 b 2 c 2 + b 4 = 0 \Leftrightarrow a^2c^2-a^4-b^2c^2+b^4=0 ( a 2 b 2 ) ( c 2 a 2 b 2 ) = 0 \Leftrightarrow \left(a^2-b^2\right) \left(c^2-a^2-b^2\right)=0 a = b or a 2 + b 2 = c 2 \Leftrightarrow a=b \text{ or } a^2+b^2=c^2 Thus, A B C \triangle ABC is isosceles or right triangle.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...