Trigonometry easy

Geometry Level 3

Is the following statement always true?

If tan x = 1 , tan y = 1 2 , tan z = 1 3 , then x = y + z . \text{If } \tan x = 1, \tan y = \dfrac12, \tan z= \dfrac13, \text{ then } x=y+z.

Yes No

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Althought tan ( y + z ) = tan y + tan z 1 tan y tan z = tan x \tan(y+ z) = \frac{\tan y + \tan z}{1 - \tan y \cdot \tan z} = \tan x , it depends on which cuadrants the angles belongs to. Take y = tan 1 ( 1 2 ) , z = tan 1 ( 1 3 ) y = \tan^{-1} (\frac{1}{2}), \quad z = \tan^{-1} (\frac{1}{3}) belonging to the first cuadrant, then 0 < y < 45 º , 0 < z < 45 º 0 < y + z < 90 º 0 < y < 45º, \space 0 < z < 45º \Rightarrow 0 < y + z < 90º and take x = 225 º x = 225º

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...