Trigonometry expression

Geometry Level 1

tan θ \tan{\theta}

Which identity is equal to the above expression?

cos 2 θ + sin 2 θ \text{}{\cos}^{2}{\theta}+{\sin}^{2}{\theta} 1 cos 2 θ \text{}1-{\cos}^{2}{\theta} 1 sin 2 θ \text{}1-{\sin}^{2}{\theta} sin θ cos θ \frac{\sin{\theta}}{\cos{\theta}} cos θ sin θ \frac{\cos{\theta}}{\sin{\theta}}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Munem Shahriar
Jul 29, 2018

  • tan θ = Opposite side Adjacent side = A B B C \tan \theta = \dfrac{\text{Opposite side}}{\text{Adjacent side}} = \dfrac{AB}{BC}

  • sin θ = Opposite side Hypotenuse = A B A C \sin \theta = \dfrac{\text{Opposite side}}{\text{Hypotenuse}} = \dfrac{AB}{AC}

  • cos θ = Adjacent side Hypotenuse = B C A C \cos \theta = \dfrac{\text{Adjacent side}}{\text{Hypotenuse}} = \dfrac{BC}{AC}

Now,

tan θ = A B B C = A B A C B C A C [ Dividing the numerator and denominator by AC ] = sin θ cos θ \large \begin{aligned} \tan \theta & = \dfrac{AB}{BC} \\ & = \dfrac{\frac{AB}{AC}}{\frac{BC}{AC}} ~~~~[\text{Dividing the numerator and denominator by AC}] \\ & = \dfrac{\sin \theta}{\cos \theta} \\ \end{aligned}

Proved.

tan θ = sin θ cos θ \tan \theta =\dfrac{\sin \theta}{\cos \theta} is an identity . . . . . .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...